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Quasiisometric Rigidity in Rank-One Symmetric Spaces à la Pansu

Abstract. This thesis investigates a rigidity property of quasiisometries of quaternionic hyper-

bolic spaces and the octonionic hyperbolic plane. Its goal is to prove that every quasiisometry

of these spaces differs from an isometry only by a map that move points by a globally bounded

amount. Pansu gave a proof of this result that relies on an investigation of the extensions of

quasiisometries to the boundaries at infinity of the rank-one symmetric spaces. The boundaries

at infinity naturally have a Carnot group structure, and it can be shown that quasiisometries

extend to quasiconformal homeomorphisms. Pansu introduced a framework in which differentials

of quasiconformal homeomorphisms between Carnot groups can be defined, and it is in these

differentials that the rigidity becomes evident. In this thesis we provide an elaboration of Pansu’s

proof together with various explicit presentations of the structures encountered along the way.

In addition, we present a geometric interpretation of a part of Pansu’s proof, which contributes

to the understanding of why the main result of this thesis does not generalise to the real and

complex hyperbolic spaces.
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1 Introduction

1 Introduction

This thesis explores a rigidity property of quasiisometries of quaternionic hyperbolic spaces and

the octonionic hyperbolic plane. Its goal is to prove that every quasiisometry of these spaces

differs from an isometry only by a function that moves points by a bounded amount. This is a

property not shared by the real and complex hyperbolic spaces. The main result is the following

theorem, which is our Theorem 8.1. It has first been stated and proven by Pansu.

Theorem. [Pan89b, Theorem 1] Every quasiisometry of a quaternionic hyperbolic space HHn,

where n ≥ 2, respectively of the octonionic hyperbolic plane OH2, lies a bounded distance away

from an isometry, that is, it differs from an isometry by an application which moves points a

bounded distance away.

There are three families of hyperbolic spaces, the real hyperbolic spaces, denoted RHn, the com-

plex hyperbolic spaces CHn and the quaternionic hyperbolic spaces HHn, with n ≥ 2 indicating

the dimension, and there is one exceptional case which is the octonionic hyperbolic plane OH2.

We will see that Pansu’s theorem does not extend to the real and complex hyperbolic spaces.

A quasiisometry is a map f : X → X ′ between metric spaces with two constants L and C such

that for all x1, x2 ∈ X we have

−C + 1
L
d(x1, x2) ≤ d′(f(x1), f(x2)) ≤ Ld(x1, x2) + C,

and d′(y, f(X)) ≤ C for all y ∈ X ′. The study of quasiisometries is motivated by geometric group

theory. Finitely generated groups equipped with word metrics naturally form metric spaces. While

the specific metric structure depends on the generating set, it can be shown that changing the

generating set only alters the metric space by a quasiisometry, and does not affect the geometry on

larger scales. Sometimes, we can recover substantial information about the algebraic properties

of a group from its quasiisometric properties. This is what we call quasiisometric rigidity.

A seminal example of this interplay is Gromov’s study of group growth. His work established that

groups with polynomial growth are virtually nilpotent, demonstrating how a group’s growth rate

can reflect its underlying geometric structure. It further implies that any group quasiisometric

to a nilpotent group is itself virtually nilpotent [Gro81]. This example illustrates how large-

scale geometric properties can determine algebraic characteristics across entire classes of groups.
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Quasiisometric Rigidity in Rank-One Symmetric Spaces à la Pansu

Gromov’s work has played a crucial role in highlighting the importance and richness of these

concepts and demonstrating the value of their study.

Another notable result on quasiisometric rigidity is Mostow’s rigidity theorem, which asserts that

any isomorphism of uniform lattices in the isomorphism group Isom (RHn) of the real hyperbolic

space RHn for n ≥ 3 is induced by an isometry of the corresponding hyperbolic space [Mos68;

Mos73]. Uniform lattices are cocompact finitely generated subgroups of Lie groups. According to

the Milnor-Švarc lemma, any lattice is quasiisometric to the Lie group itself, and an isomorphism

between two lattices extends to a quasiisometry between the corresponding symmetric spaces. If

this quasiisometry is within a bounded distance of an isometry, Mostow’s rigidity theorem implies

that the subgroups are conjugate in the case of Isom (RHn) if n > 2 [Pan89b; Sch95].

Mostow’s proof employs the behaviour of group actions on the boundaries at infinity, which,

in the case of quasiisometries, is by quasiconformal homeomorphisms, and the characteristics of

these quasiconformal homeomorphisms [Bou18]. This approach has inspired much subsequent

research, such as the work of Sullivan and Tukia, which shows that any finitely generated group

quasiisometric to RHn is isomorphic to a lattice of Isom (RHn), up to finite index [Sul81; Tuk86].

An analogous result for the complex hyperbolic spaces has been obtained by Chow [Cho96]. The

quasiconformal structure of the boundary of a hyperbolic space thus determines much of the

group’s algebraic structure.

This is also true for the remaining rank-one symmetric spaces, and it follows from the work of

Pansu which is the topic of this thesis. Pansu’s theorem establishes a quasiisometric rigidity

property of uniform lattices in Isom (HHn) or Isom
(
OH2

)
. It implies that any group quasiiso-

metric to such a lattice is itself a uniform lattice in Isom (HHn) or Isom
(
OH2

)
respectively, up

to taking quotients by finite normal subgroups or subgroups of finite index [Dru07].

In this thesis, we provide a proof of Pansu’s theorem, largely following the original proof. It relies

on the theory of differentiability of quasiconformal homeomorphisms between Carnot groups,

and an investigation of the thus obtained differentials of quasiconformal homeomorphisms in

particular. The connection with quasiisometries of rank-one symmetric spaces arises from the

fact that we can associate with each of these spaces a boundary at infinity which can be equipped

with the structure of a Carnot group. Quasiisometries can be extended to maps of the boundary,
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1 Introduction

and we will see that the extensions are quasiconformal homeomorphisms. In the cases of the

quaternionic hyperbolic spaces and the octonionic hyperbolic plane, there are certain constraints

on the possible differentials, which will imply the main theorem.

We begin this thesis with an introduction to Carnot groups. Carnot groups are a class of Lie groups

that can be equipped with Carnot-Carathéodory metrics. The structure of the resulting metric

spaces allows to consider similarity transformations. In [Pan89b], Pansu introduces a notion

of differentiability for maps between Carnot groups, employing these similarity transformations.

This is treated in Section 2.

Among the maps between Carnot groups that are differentiable in the sense of Pansu are quasicon-

formal homeomorphisms. We introduce quasiconformal homeomorphisms as maps that deform

spheres by bounded amounts. Maps with this property are locally well-behaved enough to be

differentiable. Proving this is the goal of Section 3.

Further, we investigate the continuity properties of quasiconformal homeomorphisms. The two

major observations from this section are that the differential of a quasiconformal map from a

Carnot group to itself is a group automorphisms, and that quasiconformal maps are absolutely

continuous along almost every line. This is our Section 4.

The reason why considering differentiability and continuity properties of quasiconformal homeo-

morphisms between Carnot groups is interesting in the context of this thesis is that the bound-

aries at infinity of the rank one symmetric spaces naturally have a Carnot group structure, and

that quasiisometries extend to quasiconformal homeomorphisms on the boundary. After a brief

overview of the rank-one symmetric spaces in Section 5.1, we make this precise in Section 5.2.

In Section 5.3, we show that quasiisometries map asymptotic geodesics to asymptotic quasigeode-

sics, which is why they can be extended to maps of the boundaries. Their quasiisometric properties

cause these maps to be quasiconformal, so that they are differentiable in the sense of Pansu, and

their differentials are automorphisms of the Carnot groups associated with the boundaries.

This is the point where a difference between the real and complex hyperbolic spaces and the

quaternionic hyperbolic spaces and the octonionic hyperbolic plane becomes evident. In a way,

there is more structure in the boundaries of the latter two, so that requiring to preserve it restricts

the possible group automorphisms to similarities. This is not the case for the real and complex
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hyperbolic spaces. We prove this in Section 6 and give this difference a geometric interpretation.

To complete the proof of the main theorem, it only remains to show that every similarity, or, in

the case of HHn and OH2, every differential of an extension to the boundary of a quasiisometry,

is in fact the differential of an extension of an isometry of the corresponding hyperbolic space.

This is done in Section 7. We further show that if the differentials coincide, then already the maps

must coincide on the boundary, and since maps of hyperbolic spaces with the same extension to

the boundary differ at most by bounded amounts, the main theorem follows. Finally, in Section 8,

we prove our main theorem.

Our treatment follows Pansu’s original proof closely, unless otherwise specified. In addition to

Pansu’s original work [Pan89b], we have also used an English translation by Pallier [Pal22].

2 Carnot groups

2.1 Definition and some useful properties

A Carnot group is a simply connected nilpotent Lie group whose Lie algebra admits a gradation

such that the first layer generates the entire Lie algebra. It can be equipped with a so-called sub-

Riemannian structure. Essentially, a subRiemannian structure on a manifold is a generalisation of

a Riemannian structure, the main difference being that constraints are imposed on the direction

of motion of curves that are used to measure distances. The distance function that is obtained

from such a structure is called a Carnot-Carathéodory metric. Such a Carnot-Carathéodory

metric leads to the existence of similarity transformations such as translations, homotheties and

combinations thereof, which then again allow to adapt the classical notion of a differential to one

that respects this structure of the Carnot group.

In the following, we will introduce Carnot groups and some of their properties. Carnot-Carathéodo-

ry metrics are discussed in Section 2.2. Pansu’s notion of differentiability of maps of Carnot groups

is outlined in Section 2.3. Our treatment loosely follows [LD23, Chapters 0, 6 and 8].

Definition 2.1. A Carnot group is a simply connected nilpotent Lie group N , together with a

derivation α on the Lie algebra n, such that V 1 := ker(α − 1) generates the Lie algebra in the

sense that, if we define inductively V i+1 = [V 1, V i], we have

n =
n⊕

i=1
V i.
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2 Carnot groups

Remark 2.2. A simple calculation shows that α|V i = i · idV i .

For nilpotent matrix Lie groups, the exponential map is a finite power series, and as such admits

a global inverse. This allows to conclude the following.

Lemma 2.3. [CG90, Theorem 1.2.1] Let N be a Carnot group. Then the exponential map

exp: n → N is a diffeomorphism.

This further implies that the Baker-Campbell-Hausdorff series is finite and polynomial, and allows

for the definition of convenient global coordinates, which we will call exponential coordinates, as

follows. Choose a basis of the Lie algebra X1, · · · , Xn and define

ϕ : Rn → G

(x1, · · · , xn) 7→ exp
(

n∑
i=1
xiXi

)
.

(2.1)

This is a global parameterisation by Lemma 2.3.

2.2 The subRiemannian structure of Carnot groups

A subRiemannian structure on a manifold can be viewed as a generalisation of a Riemannian

structure, in the sense that it imposes constraints on the directions of motion for the curves that

are used for defining a distance function on the manifold. We first give a formal definition and

then explain how to obtain such a structure on a Carnot group.

Definition 2.4. A distribution ∆ is bracket-generating if every tangent vector X ∈ TN is a

linear combination of X1, [X2, X3], [X4, [X5, X6]], · · · , where X1, X2, · · · are tangent to ∆.

Definition 2.5. A subRiemannian manifold is a triple (N,∆, g), where N is a differentiable

manifold, ∆ is a bracket generating distribution and g is a smooth section of positive definite

quadratic forms on ∆.

Definition 2.6. If (N,∆, g) is a subRiemannian manifold, then a curve γ in N is horizontal if

it is piecewise smooth and γ̇(t) ∈ ∆γ(t) for all t. For p ∈ N , we call ∆p ⊆ TpN the horizontal

subspace at p.

Definition 2.7. For a subRiemannian manifold (N,∆, g), we can define a distance function, the

subRiemannian distance, by

d(p, q) = inf {length(γ) : γ horizontal from p to q} .

Such a distance is also called a Carnot-Carathéodory metric.
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Note that the condition that ∆ is bracket-generating guarantees that for any pair of points p, q,

there is always a horizontal curve from p to q [LD23, Theorem 3.1.17].

On a Carnot group, where we have V 1 = ker(α−1), we may set ∆p = deLp(V 1). This distribution

is automatically bracket-generating, and we obtain a Carnot-Carathéodory metric by specifying

an inner product ge on V 1 and translating it to other points p ∈ M by setting gp = (Lp)∗ge. Note

that the resulting Carnot-Carathéodory metric is left-invariant.

Convention. Whenever we speak of the metric space properties of a Carnot group, this refers

to the properties of the Carnot group equipped with a Carnot-Carathéodory metric.

The topology induced by a Carnot-Carathéodory metric coincides with the topology of the un-

derlying manifold. However, there are aspects which are not captured by Riemannian geometric

considerations. The right tool to study these is the Hausdorff measure. For example, it can be

shown that the Hausdorff dimension is given by p =
n∑

i=1
i dim V i, which is usually different than

the dimension of the manifold [Mit85, Theorem 2]. This is related to the self-similarity properties

of these metric spaces, which is visible in the fact that every ball can be covered by smaller copies

of itself. Otherwise said, it is true that there exist positive constants σ ≤ τ , that may depend

on x, such that for the ball B(x, r) centred at x with radius r we have

σrp ≤ H p(B(x, r)) ≤ τrp, (2.2)

where p is the Hausdorff dimension of the Carnot group [Gro96, Section 0.6]

In any metric space, we can consider transformations that change the sizes of objects, but leave

their relative properties invariant. These transformations are called homotheties. In a Carnot

group, we would like to additionally impose that homotheties are group homomorphisms. We

will see that for a Carnot group with any Carnot-Carathéodory distance these transformations

exist, and they will be important for introducing differentiability on Carnot groups.

Definition 2.8. Let N be a metric space with distance function d. A homothety of ratio a is an

automorphism δa : N → N that scales distances by a factor a, that is, for all p, q ∈ N , we have

d(δap, δaq) = ad(p, q).

Lemma 2.9. For a Carnot group with derivation α the automorphism etα is a homothety of

ratio et for any Carnot-Carathéodory metric d.
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2 Carnot groups

Proof. This is essentially a consequence of the horizontality of distance-measuring curves and

the fact that α|V 1 = Idim V 1 . Recall that γ is a horizontal curve if γ̇(s) ∈ deLγ(s)V
1, hence

αγ̇(s) = γ̇(s), so that d
ds

(etαγ(s)) = etγ̇(s). Let ge be the inner product on V 1 with respect to

which the Carnot-Carathéodory metric is defined. The simple calculation

getαγ(s)

(
d

ds

(
etαγ(s)

)
,
d

ds

(
etαγ(s)

))
= etgγ(s)

(
d

ds
γ(s), d

ds
γ(s)

)
,

together with the observation that if γ is a horizontal curve from p to q, then etαγ is a horizontal

curve from etαp to etαq, shows that

d(etαp, etαq) = inf
{
length(etαγ) : etαγ horizontal from etαp to etαq

}
= inf


∫ (

getαγ(s)

(
d

ds

(
etαγ(s)

)
,
d

ds

(
etαγ(s)

)))1/2

ds : etαγ horizontal from etαp to etαq


= inf

et
∫ (

gγ(s)

(
d

ds
γ(s), d

ds
γ(s)

))1/2

ds : γ horizontal from p to q


= etd(p, q),

as desired.

2.3 Differentiability on Carnot groups

To motivate Pansu’s definition of differentiability on Carnot groups, let us first recall differentia-

bility of functions between real vector spaces.

Let U ⊆ Rn be open. A function f : U → Rm is differentiable in x ∈ U if for all v ∈ Rn the limit

dvf(x) := lim
h→0

f(x+ hv) − f(x)
h

exists and the map df(x) defined by v 7→ dvf(x) is linear. We call df(x) the differential of f at x.

For functions between Carnot groups, we can now generalise this concept by replacing addition

with group multiplication, and the stretching by h with applying a homothety e−tα. The limit

h → 0 is replaced by t → ∞, so that the ratio e−t of the homothety tends to 0. This leads to the

following definition.

Definition 2.10. Let N,N ′ be Carnot groups and let U ⊆ N be open. For a continuous

map f : U → N ′ we say that f is differentiable at x ∈ U if

Df(x) = lim
t→∞

etα′ ◦ L−1
f(x) ◦ f ◦ Lx ◦ e−tα

7



Quasiisometric Rigidity in Rank-One Symmetric Spaces à la Pansu

converges uniformly on compact sets. This limit is a group homomorphism and we call it the

differential of f at x. In analogy to the ordinary derivative, for µ ∈ N we define the differential

in the direction µ as Dµf(x) = lim
t→∞

etα′ ◦ L−1
f(x) ◦ f ◦ Lx ◦ e−tα(µ).

From now on, whenever we speak of differentiability, we will refer to this definition, and the few

times that we invoke the classical notion of differentiability, we will emphasise this by using the

attribute ordinary. For additional clarity, we denote the ordinary differential of f at x by df(x)

whereas the differential in the sense introduced above is written with a capital letter D.

Note that if we take N,N ′ to be the additive groups Rn,Rm respectively with α = idRn , α′ = idRm ,

then for v ∈ Rn we have

Dvf(0) = lim
t→∞

etα′ ◦ f ◦ e−tα(v) = lim
t→∞

f(0 + e−tv) − f(0)
e−t

,

which coincides with the ordinary differential dvf(0).

3 Differentiability of quasiconformal homeomorphisms

3.1 Outline of the proof

The goal of this section is to prove that quasiconformal homeomorphisms between open subsets

of Carnot groups are differentiable. Our proof will also imply that Lipschitz functions between

Carnot groups are differentiable. The main result of this section is the following proposition.

Proposition 3.1. Let N,N ′ be Carnot groups, and let U ⊆ N and U ′ ⊆ N ′ be open. Any

Lipschitz map and any quasiconformal homeomorphism from U to U ′ is almost everywhere dif-

ferentiable, and the differential is a homomorphism of Carnot groups. If N = N ′, then the

differential commutes with the homotheties etα.

In Section 3.2, we prove that if the differential exists almost everywhere in the direction µ, then

it also exists almost everywhere in the direction eaαµ for a ∈ R, and if it exists in two directions,

say µ and ν, then it also exists in the product of the directions µν. Moreover, these operations

are compatible with the homotheties and the group multiplication. This preliminary result will

allow us to deduce two things. First, it allows to reduce the differentiability of maps to the

differentiability of curves, and second, it implies that the differential, if it exists, is a group

homomorphism.

8



3 Differentiability of quasiconformal homeomorphisms

To see why this allows a reduction of our considerations to the case of curves, we recall from

Section 2.1 that a Carnot group can globally be parameterised with exponential coordinates, that

the Baker-Campbell-Hausdorff series is finite and polynomial, and that the subspace V 1 of a

gradation of its Lie algebra generates the Lie algebra. Given a basis X1, · · · , Xr of V 1, the curves

{s 7→ exp (sXi) : i = 1, . . . , r}

generate the Carnot group. These curves are clearly horizontal. If restricted to a bounded domain,

they have finite length and hence are rectifiable.

In Section 3.3 we prove that any rectifiable curve in a Carnot group is differentiable. The proof

of the main result of this section then follows by showing that quasiconformal homeomorphisms

map rectifiable curves to rectifiable curves. This is done in Section 3.4. In particular, if f is a

quasiconformal homeomorphism, then the curves

s 7→ f(exp (sXi)), i = 1, . . . , r,

are rectifiable and thus differentiable. We can then repeatedly apply the preliminary result to

deduce differentiability of f . We will largely follow Pansu’s original proof, with the exception

that Pansu’s analysis of rectifiable curves is replaced by the shorter proof of [LD23] and [Mon01].

3.2 Reduction to the case of curves

The first step in proving Proposition 3.1 is a reduction to the case of curves. We will show

that if the differential exists almost everywhere in two directions µ and ν, then it also exists

in the direction eaαµebαν for a, b ∈ R. The proof of this statement is divided into two parts.

In Lemma 3.5 we show that the existence of Dµf(x) almost everywhere implies the existence

of Deaαµf(x) almost everywhere, and in Lemma 3.7 we treat the product of two directions. Before

we prove Proposition 3.1, we recall a few general results that we will use to prove the main result

of this section.

Lemma 3.2. [Rud87, p.55 and p.73] Let (X,µ) be a measure space with µ(X) < ∞ and let Y be

a separable metric space. Let (ft)t>0 be a family of measurable functions from X to Y depending

on a real parameter t ∈ (0,∞). Suppose that (ft)t converges almost everywhere pointwise to f as

t → 0. Then for every τ > 0, there exists a measurable subset K ⊆ X such that µ(X \ K) < τ

and (ft)t converges to f uniformly on K.

9
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We point out that open subsets U of Carnot groups equipped with a Carnot-Carathéodory metric

and Hausdorff measure H p, where H p(U) < ∞, satisfy all requirements of this proposition.

Convention. Whenever we consider the measure H p, we may take p to be the Hausdorff di-

mension of the Carnot group unless otherwise specified.

Definition 3.3. Let X be a space equipped with a measure µ, and A ⊆ X a measurable subset.

A µ-density point of A is a point x ∈ A satisfying

lim
r→0

µ(A ∩B(x, r))
µ(B(x, r)) = 1.

Equivalently, as measures are countably additive, one can require lim
r→0

µ(Ac∩B(x,r))
µ(B(x,r)) = 0.

Measurable sets in Carnot groups equipped with the Hausdorff measure also have the following

useful property.

Lemma 3.4. [Mon01, Theorem 1.6.5]. If N is a Carnot group equipped with a Carnot-Carathéo-

dory metric and Hausdorff measure H p, and K is a measurable set in N , then H p-almost every

point of K has density 1.

We first observe that the differential is compatible with homotheties.

Lemma 3.5. Let N,N ′ be Carnot groups and let U ⊆ N be open. Consider f : U → N ′, and

let µ ∈ N and x ∈ U . If the differential Dµf(x) exists, then Deaαµf(x) exists for all a ∈ R and

Deaαµf(x) = eaα′
Dµf(x).

Proof. We assume that for µ ∈ N and x ∈ U the limit

Dµf(x) = lim
t→∞

etα′ ◦ L−1
f(x) ◦ f ◦ Lx ◦ e−tα(µ)

exists. Then

Deaαµf(x) = lim
t→∞

etα′ ◦ L−1
f(x) ◦ f ◦ Lx ◦ e−tα(eaαµ)

= lim
t→∞

eaα′ ◦ e(t−a)α′ ◦ L−1
f(x) ◦ f ◦ Lx ◦ e−(t−a)α(µ)

= lim
s:=(t−a)→∞

eaα′ ◦ esα′ ◦ L−1
f(x) ◦ f ◦ Lx ◦ e−sα(µ)

= eaα′
(

lim
s→∞

esα′ ◦ L−1
f(x) ◦ f ◦ Lx ◦ e−sα(µ)

)
= eaα′

Dµf(x),

where for obtaining the last equality we exchanged the continuous map eaα′ and the limit.

10



3 Differentiability of quasiconformal homeomorphisms

In particular, this implies that the differential of a map from a Carnot group to itself commutes

with the homotheties eaα. We now want to prove that if the differential in two directions exists

almost everywhere, then it exists also in the product of the two directions, and the latter is given

by the product of the differentials in the two directions. As in the classical setting, our results on

differentiability will only be applicable to functions that locally do not vary too much. To make

this precise, we introduce the following.

Definition 3.6. Let X,X ′ be metric spaces, let f be a map from X to X ′. The local dilation

of f , denoted Lipf , at the point x ∈ X is defined as

Lipf (x) = lim sup
y→x

d(f(x), f(y))
d(x, y) .

We can now formulate and prove the second part of our statement above.

Lemma 3.7. Let N,N ′ be Carnot groups, and let U ⊆ N be open. Let f : U → N ′ be a map

whose local dilation Lipf is finite almost everywhere. Let µ, ν ∈ N . Assume that for almost every

x ∈ N , the limits

Dµf(x) = lim
t→∞

etα′(f(x)−1f(xe−tαµ)),

Dνf(x) = lim
t→∞

etα′(f(x)−1f(xe−tαν))

exist. Then for every ω of the form ω = eaαµebαν, where a, b ∈ R, and for almost every x ∈ N ,

the limit Dωf(x) = lim
t→∞

etα′(f(x)−1f(xe−tαω)) exists and is equal to eaα′
Dµf(x)ebα′

Dνf(x).

Proof. First we note that with Lemma 3.5 it is enough to consider the case ω = µν, where we

are renaming ν → e−bαν. Without loss of generality, we may assume H p(U) < ∞. Setting

ft(x, ν) := etα′(f(x)−1f(xe−tαν)), (3.1)

we note that for all t ∈ R and x ∈ U the function ft(·, ν) is measurable because we assumed

that f is locally Lipschitz. Per assumption we have that ft(x, ν) → Dν(x) as t → ∞ for almost

every x ∈ U and fixed ν ∈ N . Lemma 3.2 implies that we can find a closed subset F ⊆ U whose

complement has measure H p(U \K) < τ for arbitrary τ > 0, and

(a) Dµf(x) and Dνf(x) exist for all x ∈ F and are the respective limits of ft(x, µ) and ft(x, ν),

(b) x 7→ Dνf(x) is continuous on F ,

(c) etα′(f(x)−1f(xe−tαν)) → Dνf(x) uniformly in x on F .

11
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The statement (a) holds after removing from F a suitable zero-measure subset, (b) is true because

x → ft(x, ν) continuous for all t and the uniform limit of a family of continuous functions on the

compact set F is continuous on F , and (c) is a consequence of the fact that ft(·, ν) is continuous

for all t ∈ R, so that the uniform limit Dνf(·) is continuous.

We will show that this proves the proposition for those x ∈ F such that xetαµ ∈ F for all t ∈ R.

Assuming xetαµ ∈ F , we decompose etα′(f(x)−1f(xe−tαω)) into a product of three terms and

investigate the convergence of each of the factors. Note that e−tα(µν) = e−tαµe−tαν and write

etα′(f(x)−1f(xe−tαω)) = etα′(f(x)−1f(xe−tα(µν)))

= etα′ (
f(x)−1f(xe−tαµ)

)
︸ ︷︷ ︸

=:(1)

etα′ (
f(xe−tαµ)−1f(xe−tαµe−tαν)

)
(Dνf(xe−tαµ))−1︸ ︷︷ ︸

=:(2)

Dνf(xe−tαµ)︸ ︷︷ ︸
=:(3)

,

where (1) converges to Dµf(x) by (a), (2) converges to 1 by (c), and (3) converges to Dνf(x)

by (b), considering that lim
t→∞

e−tαµ = 1 as t → ∞. The union of such sets K with τ−1 ∈ N is a

full measure set. In the case that xetαµ ∈ F for all t, this concludes the proof.

The requirement that xetαµ ∈ F for all t is not necessarily satisfied, but it can be shown that, if x

is a H p-density point of F , then there is a point of F that is close to xetαµ. Let λt be the distance

from xetαµ to F , and let µ′
t be such that xetαµ′

t realises that distance. As B(xetαµ, λt) ∩ F is

an H p-zero set,

H p(B(x, e−t + λt) \ F )
H p(B(x, e−t + λt))

≥ H p(B(xe−tαµ, λt))
H p(B(x, e−t + λt))

=
(

λt

e−t + λt

)p

.

The left side tends to 0 as t tends to ∞ because x is a H p-density point of F . Thus etλt tends

to 0 when t tends to ∞, and µ′
t tends to µ when t tends to ∞. We write etα′

f(x)−1f(xetαω) as

etα′
f(x)−1f(xe−tαω) = (1)(2)(3)(4)(5),

where we set

(1) = etα′ (
f(x)−1f(xe−tαµ)

) by (a)−→ Dµf(x),

(2) = etα′ (
f(xe−tαµ)−1f(xe−tαµ′

t)
) by (∗) below−→ 1,

(3) = etα′ (
f(xe−tαµ′

t)−1f(xetαµ′
te

−tαν)
) (
Dνf(xetαµ′

t)
)−1 by (c)−→ 1,

(4) = Dνf(xetαµ′
t),

(5) = etα′ (
f(xe−tαµ′

te
−tαν)−1f(xe−tαµe−tαν)

) by (∗∗) below−→ 1.

12



3 Differentiability of quasiconformal homeomorphisms

It remains to justify the convergence and limits of (2) and (5). Let d, d′ denote the left-invariant

Carnot-Carathéodory distances in N,N ′ respectively. Then we have

d′((5), 1) = d′
(
etα′ (

f(xe−tαµ′
te

−tαν)−1f(xe−tαµe−tαν)
)
, 1
)

(∗∗)

= d′
(
etα′ (

f(xe−tαµ′
te

−tαν)−1
)
etα′ (

f(xe−tαµe−tαν)
)
, 1
)

= d′
(
etα′ (

f(xe−tαµe−tαν)
)
, etα′ (

f(xe−tαµ′
te

−tαν
))

= d′
(
f(xe−tαµe−tαν), f(xe−tαµ′

te
−tαν)

)
≤ Metd

(
e−tα(µν), e−tα(µ′

tν)
)

= Md (µν, µ′
tν) → 0,

where the arguments from line to line are that etα′ is a group homomorphism, then we use the

left-invariance of the distance function, then the fact that etα′ is a homothety of ratio et, then

that we assume that Lipf is globally bounded by M , an assumption that we justify below, then

again that e−tα is a homothety of ratio e−t, and finally the convergence to 0 as t → ∞ follows

from µ′
t → µ as established earlier, together with the fact that right-multiplication is continuous.

Similarly, one shows that

d′((2), 1) = d′
(
etα′ (

f(xe−tαµ)−1f(xe−tαµ′
t)
)
, 1
)

≤ Md(µ, µ′
t) → 0. (∗)

If Lipf were bounded everywhere on F as we assumed in (∗) and (∗∗), then we would have proven

the existence of Dµνf(x) at almost every H p-density point of F . By Lemma 3.4, this is almost

everywhere of F . However, we have boundedness of Lipf only almost everywhere on U . Therefore,

to conclude the general statement we need to take a subset of F on which Lipf ≤ M . According

to our assumption, almost every point x lies in one of the sets

Ak =
{
x ∈ N : for all y ∈ B(x, k−1) we have d

′(f(x), f(y))
d(x, y) ≤ k

}
.

Taking ⋃
k≤K0

Ak ∩F for some K0 ∈ N provides us with a subset of F on which f is Lipschitz again.

This choice can be made such that its complement has arbitrarily small measure. Taking the

union over such sets with increasingly small measure finishes the proof.

As outlined earlier, the two previous lemmas can be used to reduce the proof of Proposition 3.1

to the differentiability of curves. This is because, due to the bijectivity of the exponential map,

13
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every µ ∈ N can be written as

µ = exp
(

n∑
i=1
xiXi

)
, (3.2)

where {X1, · · · , Xn} is a basis of the Lie algebra n of N , and xi ∈ R. Moreover, n is generated by

iterated brackets of elements of V 1, and the Baker-Campbell-Hausdorff series is polynomial and

finite. We can rewrite (3.2) as

µ =
m∏

i=1
exp(si(x1, · · · , xn)Xi),

for some m ∈ N, where now Xi ∈ {X1, · · · , Xr}, which we take to be a basis of V 1.

By Lemma 3.7, if Dexp(s1X1)f(x) and Dexp(s2X2)f(x) exist almost everywhere, then the differential

on the product of the directions Dexp(s1X1) exp(s2X2)f(x) exists almost everywhere. It is easy to see

that this can be iterated to conclude the existence of Dµf(x).

Corollary 3.8. Let N,N ′ be Carnot groups, and let U ⊆ N be an open subset. Let f be an

application from U into N ′ such that Lipf < ∞ almost everywhere. Let n be the Lie algebra of N

and let {X1, · · · , Xr} generate n. If for all i ∈ {1, · · · , r} and for almost every x ∈ N the curve

s 7→ f(x exp(sXi))

is almost everywhere differentiable, then f is differentiable almost everywhere, and the differential

µ 7→ Dµf(x) is a group homomorphism.

Proof. In Lemma 3.7 it was established that µ 7→ Dµf(x) is a group homomorphism. We further

know that for Carnot groups the exponential map is a diffeomorphism, this has been shown in

Lemma 2.3. As V 1 generates the Lie algebra n, the set of curves {exp (sXi) : s ∈ R, i = 1, · · · , r}

generates N . Applying Lemma 3.7 yields the existence of the differential Dµf(x) for all µ ∈ N .

It remains to confirm that the convergence in µ of lim
t→∞

etα′(f(x)−1f(xe−tαµ)) to Dµ(x) for fixed x

is uniform. Note that in the proof of Lemma 3.7 we had fixed µ and investigated the convergence

of the expression.

We define ft as in (3.1), and the proper submersion

µ̃ : Rm → N, (a1, · · · , am) 7→
m∏

i=1
eaiα exp(Xi),

where Xi ∈ {X1, · · · , Xr}. This will be used to parameterise the curves, one by one in each

14



3 Differentiability of quasiconformal homeomorphisms

argument. Inserting µ̃ into ft(x, ·), we get

ft(x, µ̃(a1, · · · , am)) = ft(x,
m∏

i=1
eaiα exp(Xi)).

This can inductively be decomposed into a product of terms ft(x, eajαXj), as in the proof of

Lemma 3.7, that converge to eajα′
Dexp (Xj) by assumption. In general, additional terms appear in

this decomposition, but it is easy to see that these converge to 1. From Lemma 3.7, we know that

ft(x, µ̃(a1, · · · , am)) has a limit which is the product of the limits eajα′
Dexp Xj

. The fact that this

convergence is uniform in t follows from the fact that for each of the terms, we see from the proof

of Lemma 3.7 that the convergence only depends on |aj| and on the convergence of f(exp(Xj))

to Dexp(Xj)(x). This observation completes the proof.

3.3 Differentiability of rectifiable curves

Corollary 3.8 shows that we only need differentiability of the curves s 7→ f(x exp(sXi)) almost

everywhere, where Xi ∈ {X1, · · · , Xr} generate the Lie algebra, to conclude differentiability of f

almost everywhere. For using this to prove that quasiconformal homeomorphisms are differen-

tiable, we introduce rectifiable curves.

Definition 3.9. Given a path p in a metric space X, we define its length as follows. A partition

a = t0 < t1 < · · · < tn−1 < tn = b

of the interval [a, b] defines a finite collection of points p(t0), p(t1), · · · , p(tn) in the space X. The

length of p is then defined to be

length(p) = sup
a=t0<t1<···<tn=b

n−1∑
i=0

dist(p(ti), p(ti+1)),

where the supremum is taken over all possible partitions of [a, b] and all integers n.

If the length of p is finite, then p is called rectifiable.

We remark that in a Carnot group with Carnot-Carathéodory spaces, this coincides with the

notion of lengths of curves that we introduced earlier. Clearly the curves

γ : [a, b] → G, s 7→ x exp(sXi) for a, b ∈ R and Xi ∈ V 1

are rectifiable, with length (b − a) ∥Xi∥. We will later show that quasiconformal maps map

rectifiable curves to rectifiable curves, in particular, the curves s 7→ f(exp(sXi)) for i = 1, · · · , r,

are rectifiable. In this section, we prove that rectifiable curves are differentiable, so that the curves
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s 7→ f(exp(sXi)) are differentiable. With Corollary 3.8 the differentiability of quasiconformal

homeomorphism follows.

To show the differentiability of rectifiable curves, we will make use of the Lebesgue differentiation

theorem in the form stated below.

Lemma 3.10. [Rud87, Theorem 7.7] For f ∈ L1(Rk), a point x ∈ Rk for which

lim
r→0

1
|B(x, r)|

∫
B(x,r)

|f(y) − f(x)| dy = 0

is called a Lebesgue point of f . Almost every point x ∈ Rk is a Lebesgue point of f .

We observe that rectifiable curves are horizontal almost everywhere.

Lemma 3.11. Let γ : I → N be a rectifiable curve in a Carnot group N , where I is some interval

in R. If γ̇ denotes the ordinary differential of γ, then we have γ̇ ∈ V 1 almost everywhere.

Proof. Without loss of generality we may assume I = [0, 1]. By bijectivity of the exponential

map, there exists a curve σ : I → n such that γ(s) = exp(σ(s)), and we can assume σ(0) = 0.

Choose a subdivision Σ of [0, s]. We approximate σ up to a value s of the curve parameter

by a piecewise linear curve which meets σ at the points {σ(ti) : ti ∈ Σ}. The corresponding

approximation of γ is given by cΣ(s) =
N−1∏
k=0

exp(σ(tk+1) −σ(tk)). Choose a subdivision Σ of [0, s].

We consider the curve c(s) = lim
|Σ|→0

cΣ(s).

If σ is parameterised by arc length, then by [Pan83, Lemma 42], it holds that

∥σ(s) − log c(s)∥ ≤ const.s2. (3.3)

Any v ∈ n can be written as v =
n∑

i=1
vi, where vi ∈ V i. Using the dilations of the Carnot group,

we see that∥∥∥v2 + · · · + vn
∥∥∥ ≤ const.d(1, exp(v))2. (3.4)

We assume that c is parameterised by arc length and set

c(s+ t) = c(s) exp(σ1(t) + · · · + σn(t)).

Combining (3.3) and (3.4), we conclude

σ(s+ t) − σ = σ1(s) + O(s2).

This shows that γ is almost everywhere tangent to V 1 and that γ̇ = σ1.
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3 Differentiability of quasiconformal homeomorphisms

Our result about the differentiability of rectifiable curves is the following proposition. We remark

that our proof of this partial result does not follow the original proof given by Pansu in [Pan89b],

but instead is close to [LD23, Proposition 8.6.6] and [Mon01, Lemma 2.1.4]. Both rely on the

same ideas as Pansu’s proof, but are considerably shorter.

Proposition 3.12. Let I be an interval in R. A locally rectifiable curve γ : I → N is almost

everywhere differentiable. If γ̇(t) ∈ Tγ(t)N is the ordinary derivative, then γ̇(t) ∈ deLγ(t)(V1) and

the derivative is expressed as Dµγ(t) = exp(µγ̇(t)), where µ ∈ N .

Proof. We may take I = [0, 1]. Further, we assume that µ = 1, because the other cases can

be derived from this using left-multiplication. Let X1, · · · , Xr be a basis of V 1. By Lemma 3.11

there exist functions h1, · · · , hr ∈ L∞([0, 1];R) such that for almost all t ∈ [0, 1] we can write

γ̇(t) =
r∑

j=1
hj(t)Xj(γ(t)). (3.5)

As γ is locally rectifiable, it is L-Lipschitz, so that we may take |hj(t)| ≤ L for all t. By

Lemma 3.10, almost every point in I is a Lebesgue point for each of the functions hj, and we

choose x ∈ [0, 1] both a point at which the ordinary differential of γ exists and a Lebesgue point

for all hj, that is,

1
|t− x|

∫ t

x
|hj(s) − hj(t)| ds → 0 as t → x.

Up to replacing γ with the curve t 7→ γ(x)−1γ(t+x) we may also assume that x = 0 and γ(x) = 1.

Our aim is to show that

lim
t→0

δ1/tγ(t) = exp(γ̇(0)).

Note that we have γ̇(0) =
r∑

j=1
hj(0)Xj(0), since 0 is a Lebesgue point for all hj.

We set ηt(s) := δ1/tγ(ts). Then each ηt : [0, 1] → N is a curve starting at 0 that is L-Lipschitz,

d(ηt(s), ηt(s′)) = d(δ1/tγ(ts), δ1/tγ(ts′)) ≤ L

t
|ts− ts′| = L |s− s′| .

We may thus apply the Arzelà-Ascoli theorem to conclude that every sequence (ηtk
)k∈N has a

uniformly converging subsequence. Using (3.5), we calculate

η̇t(s) = log
(
d

ds
δ1/tγ(ts)

)
= log

(
(δ1/t)∗(tγ̇(ts))

)
= γ̇(ts) =

r∑
j=1
hj(ts)Xj(ηt(s)). (3.6)

Our next goal is to prove that ηt uniformly converges to η0 as t → 0. This will complete the proof
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since in particular, ηt(1) = δ1/tγ(t) → exp(γ̇(0)). To prove the claim, we invoke the Arzelà-Ascoli

theorem to obtain for every sequence (tk)k∈N converging to 0 a further subsequence tki
and a

curve ξ : [0, 1] → N to which the sequence (ηtki
)i∈N converges uniformly. We want to show that

this limit ξ satisfies

ξ̇(s) =
r∑

j=1
hj(0)Xj(ξ(s))

for almost every s ∈ [0, 1], because this will imply that ηtki
→ exp(γ̇(0)).

Let us introduce an auxiliary curve σ as the curve inN with σ(0) = 1 and σ̇(s) =
r∑

j=1
hj(0)Xj(ξ(s)).

If we can prove that ηtki
converges pointwise to σ, we are done. To obtain log(σ(v)ηtki

(v)−1), we

integrate σ̇(s) − η̇tki
(s) from 0 to an arbitrary v ∈ (0, 1), inserting η̇tki

(s) from (3.6). This yields

log(σ(v)ηtki
(v)−1) =

r∑
j=1

∫ v

0

(
hj(0)Xj(ξ(s)) − hj(tki

s)Xj(ηtki
(s))

)
ds

≤
r∑

j=1

∫ v

0

(
|hj(0) − hj(tki

)|Xj(ξ(s)) + |hj(tki
s)|
∣∣∣Xj(ξ(s)) −Xj(ηtki

(s))
∣∣∣) ds.

By continuity of Xj, the last summand tends to 0 as i → ∞, and for the first summand we have
r∑

j=1

∫ v

0
|hj(0) − hj(tki

s)| ds ≤
r∑

j=1

∫ 1

0
|hj(0) − hj(tki

s)| ds =
r∑

j=1

1
tki

∫ tki

0
|hj(0) − hj(u)| du,

which tends to 0 as i → ∞, or equivalently tki
→ 0, since 0 is a Lebesgue point for every hj.

It follows that ηt converges uniformly to η0, where η0(s) = δ1/tγ(ts)|t=0, and we conclude that

δ1/tγ(t) = ηt(1) → exp(γ̇(0)) as t → 0, as desired.

3.4 Differentiability of quasiconformal homeomorphisms

In this section, we prove that quasiconformal homeomorphisms map rectifiable curves to rectifiable

curves. Using Corollary 3.8 and Proposition 3.12, this will conclude the proof that quasiconformal

homeomorphisms are differentiable almost everywhere. We start with some definitions.

Notation. When B = B(x, r) is a ball in a metric space, we write kB for the ball B(x, kr).

Definition 3.13. Let X be a metric space. An annulus in X is a tuple of subsets (a, ã),

where a, ã ⊆ X and a ⊆ ã. It is a k-annulus if there exists B such that

B ⊆ a ⊆ ã ⊆ kB.

Definition 3.14. Let X and X ′ be metric spaces and let η : [0,∞) → [0,∞) be a homeomor-

phism. A map f : X → X is called η-quasisymmetric if it sends any k-annulus that is small enough
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in X into an η(k)-annulus of X. A homeomorphism f between X and X ′ is called quasiconformal

if f and f−1 are η-quasisymmetric.

In the course of proving that quasiconformal homeomorphisms map rectifiable curves to rectifiable

curves, we apply the following lemma several times.

Lemma 3.15. [Fed69, Theorem 2.8.4] Let X be a metric space. Let {Bi : i ∈ I} be a cover of X

with balls. Then there exists a subfamily {Bj : j ∈ J} of disjoint balls such that the balls with the

same centre {3Bj : j ∈ J} cover X.

We also need the following, which we refer to as Carathéodory’s construction. Essentially, this is

a way of obtaining a measure from a function that is defined on a family of subsets of a space.

Definition 3.16. Let A ⊆ P(X) and ϕ : A → R≥0. We set

Φp
ε(A) = inf

{∑
i

ϕ(Bi)p : (Bi)i cover A, radius(Bi) ≤ ε for all i
}
,

and define

Φp(A) := lim sup
ε→0

Φp
ε(A).

A proof that this is a measure can be found for example in [Fed69, pp.170].

Note that when A = {B ⊆ X : B is a ball in X} and ϕ(B) = diam(B), the construction yields

the p-dimensional Hausdorff measure.

We need a way of using measurable functions between two spaces to push measures to other

measurable spaces.

Definition 3.17. Let (X,µ), (Y, ν) be measure spaces and f : X → Y a measurable function.

For all measurable sets A ⊆ Y set

f∗µ(A) := µ(f−1(A)).

Then f∗µ defines a measure on Y that we call the pushforward measure.

The next lemma provides a bound of an integral over a curve family. We will be using this lemma

with the two measures H p and (f−1)∗H p′ for a quasiconformal homeomorphism f .

Lemma 3.18. Let U be an open subset in a metric space X, equipped with two measures µ and ν.

Let be a curve family in X, equipped with a measure dγ. Let p > 1. Let us assume that, for every

ball B of X that is contained in U ,∫
{γ∈Γ: γ∩B ̸=∅}

dγ ≤ µ
(1

3B
)1−1/p

.
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For every ball B ⊆ U , we set ϕ(B) = ν
(

1
3B
)1/p

. Let Φ1 be the 1-dimensional measure obtained

by Carathéodory’s construction from ϕ. Then∫
Γ

Φ1(γ)dγ ≤ ν(U)1/pµ(U)1−1/p.

Proof. We take a covering of U by balls 1
3Bi contained in U with diameter less than ε. From

Lemma 3.15 we obtain a cover Bi such that the balls 1
3Bi do not overlap.

For each Bi we define an indicator function on the family of curves Γ,

1i(γ) =


1 if Bi ∩ γ ̸= ∅,

0 otherwise.

Then, because we take the infimum over such sums in the definition of Φ1, we have

Φ1
ε(γ) ≤

∑
i

1i(γ)ϕ(Bi) =
∑

i

1i(γ)ν(1
3Bi)1/p.

When integrating over Φ1
ε, by Tonelli’s theorem we may exchange the summation and integration.

Using assumption on µ and applying the Hölder inequaliy, it follows that∫
Γ

Φ1
ε(γ)dγ ≤

∑
i

(∫
Γ

1i(γ)dγ
)
ν(1

3Bi)1/p ≤
∑

i

ν(1
3Bi)1/pµ(1

3Bi)1−1/p

≤
(∑

i

ν(1
3Bi)

)1/p (∑
i

µ(1
3Bi)

)1−1/p

≤ ν(U)1/pµ(U)1−1/p,

where the last inequality is a consequence of the fact that the balls 1
3Bi are pairwise disjoint

and contained in U . As Φ1
ε(γ) increases when ε decreases to 0, and the bound above holds for

every ε > 0, it is still valid in the limit ε → 0. This concludes the proof.

We are interested in the case that the metric space is a Carnot group and the two measures are

the Hausdorff measure H p and the pushforward measure (f−1)∗H p′ , where f is a quasiconformal

homeomorphism. Our goal is to answer the question if (f−1)∗H p′ is absolutely continuous with

respect to H p in order to study the absolute continuity of f . We need the following concept.

Definition 3.19. If f is a homeomorphism between open subsets of Carnot groups with Hausdorff

dimension p and p′, we define its Jacobian

f ′(x) = lim
ε→0

H p′(f(B(x, ε)))
H p(B(x, ε)) .

By [Fed69, pp.152], a sufficient condition for the existence of this limit is H p(2B) ≤ const.H p(B)

for every ball B, a condition that is satisfied by (2.2). Thus the limit f ′ exists and is finite almost
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everywhere for homeomorphisms between open subsets of Carnot groups.

We can now prove that quasiconformal homeomorphisms map rectifiable curves to rectifiable

curves. Given that by Corollary 3.8 it is sufficient to confirm for a basis {X1, · · · , Xr} of V 1 the

differentiability of the curves s 7→ f(x exp(sXi)) and by Proposition 3.12 we know that rectifiable

curves are differentiable, and given that the curves s 7→ exp(sXi) are rectifiable, this will complete

the proof that quasiconformal homeomorphisms are differentiable.

Proposition 3.20. Let N and N ′ be Carnot groups, let U ⊆ N and U ′ ⊆ N ′ be open with

H p(U) < ∞ and let f : U → U ′ be a quasiconformal homeomorphism. Then

(i) N and N ′ have equal Hausdorff dimension,

(ii) f sends almost every orbit of a left-invariant horizontal vector field to a rectifiable curve,

(iii) the local dilation Lipf is finite almost everywhere and bounded by (Lipf )p ≤ η(1)pf ′.

Proof. Let U be an open subset of the Carnot group N such that H p(U) < ∞, where p is the

Hausdorff dimension of N . Let µ = H p, and let v ∈ V 1 define a horizontal left-invariant vector

field. By Ψ we denote the flow of the vector field defined by v. We choose the curve family Γ

that consists of curves γx with γx(t) = Ψ(x, t). These are the orbits of v.

Let ω be a biinvariant volume form. This defines a measure dγ on the space of orbits that is

invariant through left translation and homogeneous with degree p− 1 under the homotheties etα.

Hence, up to a normalisation of ω, one has for every ball B contained in U ,∫
{γ∈Γ: γ∩B ̸=∅}

dγ = µ
(1

3B
)1−1/p

. (3.7)

It follows that the assumptions of Lemma 3.18 are satisfied.

Let f : U → U ′ ⊆ N ′ be a quasiconformal homeomorphism, and let ν = (f−1)∗H p′ . Since f is

η-quasisymmetric, for every ball B in U there exists a ball B′ in N ′ such that

B′ ⊆ f
(1

3B
)

⊆ f(B) ⊆ η(3)B′.

By (2.2) there exists some σ > 0 such that H p′(B′)1/p ≥ σp′/pradius(B′)p′/p. Hence

ϕ(B) = ν
(1

3B
)1/p

=
(
H p′

(
f
(1

3B
)))1/p

≥ H p′(B′)1/p ≥
(

σ

η(3)

)p′/p

radius(η(3)B′)p′/p,

where the first inequality follows from the fact that B′ ⊆ 1
3B. Consider a covering {Bi}i∈I of γ.

As f is η-quasisymmetric, there exist balls B′
i such that the balls η(3)B′

i cover f(γ). Further, we

21



Quasiisometric Rigidity in Rank-One Symmetric Spaces à la Pansu

have that f(B) ⊆ η(3)B′, thus it follows that

Φ1(γ) = lim sup
ε→0

Φ1
ε(γ) = lim sup

ε→0

(
inf

{∑
i

ϕ(Bi) : (Bi)i cover γ, radius(Bi) ≤ ε for all i
})

≥ lim sup
ε→0

inf
∑

i

(
σ

η(3)

)p′/p

radius(η(3)B′
i)p′/p :

(η(3)B′
i)i cover f(γ), radius(Bi) ≤ ε for all i




=
(

σ

η(3)

)p′/p

H p′/p(f(γ)).

By Lemma 3.18, the integral over Φ1 is bounded and therefore the image of almost every orbit

of v under f has a finite p′/p-dimensional Hausdorff measure. This proves (ii).

Further, the Hausdorff dimension of f(γ) is at least 1, which implies p′ ≥ p. Repeating this

argument for f−1 concludes the proof of (i).

To prove (iii), we set L = sup {d(f(x), f(y)) : d(x, y) < r} and l = d(f(x), f(∂B(x, r))) for

small r > 0. When r tends to 0, then Lipf (x) = lim sup L
r

per definition, and L/l ≤ η(1),

because f maps the 1-annulus (B,B) onto an η(1)-annulus. This implies that there exists a

ball B′ such that B′ ⊆ f(B) ⊆ η(1)B′. The radius of B′ is thus at most the distance of f(x)

and ∂B(x, r), so that d(f(x), f(y))d(x, y) < r ≤ η(1)radiusB′. We conclude that

L

l
= sup {d(f(x), f(y)) : d(x, y) < r}

d(f(x), f(∂B(x, r))) .

Thus, for sufficiently small r, it holds that(
L

r

)p

≤ η(1)p

(
l

r

)p

≤ η(1)p H p(f(B(x, r)))
rp

.

At almost every point x, the right hand side tends to η(1)p H p(f(B(x,r)))
H p(B(x,r)) = η(1)pf ′(x) as r → 0.

Proof (of Proposition 3.1). It is clear that the image of rectifiable curves under a Lipschitz map

are again rectifiable curves. From Proposition 3.12 we know that the hypotheses of Corollary 3.8

are satisfied, and therefore Lipschitz maps are differentiable.

For quasiconformal homeomorphisms, we have shown in Proposition 3.20 (ii) that the images of

rectifiable curves are again rectifiable curves. Again, the statement of the proposition follows

from Corollary 3.8 and Proposition 3.12.
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4 Absolute continuity of quasiconformal homeomorphisms

In both cases, we obtain the group homomorphism property of the differential from Lemma 3.7,

and the fact that, in the case of a map from an open subset of N to N , the differential commutes

with etα from Lemma 3.5.

4 Absolute continuity of quasiconformal homeomorphisms

4.1 Bijectivity of the differential

In this section, we prove some results regarding absolute continuity of quasiconformal homeo-

morphisms. These will be needed to show that differentials of quasiconformal homeomorphisms

between Carnot groups of Hausdorff dimensions p > 1 are group automorphisms. Further, we

prove that quasiconformal homeomorphisms are absolutely continuous along almost every curve.

This property will be relevant later for some local-to-global arguments.

We recall some general definitions and results.

Definition 4.1. If µ and ν are two measures on the same measurable space (X,A), then µ is said

to be absolutely continuous with respect to ν if µ(A) = 0 for every set A ∈ A for which ν(A) = 0.

Lemma 4.2. [Roy88, Theorem 11.23] If µ is absolutely continuous with respect to ν, and both

measures are σ-finite, then µ has a density. That is, there exists a ν-measurable function f taking

values in [0,∞), such that for any ν-measurable set A, we have

µ(A) =
∫

A
f dν.

Definition 4.3. Let µ, ν be measures satisfying the requirements of Lemma 4.2. The density f

is also called Radon-Nikodym derivative of µ with respect to ν, and denoted f = dµ
dν

.

Lemma 4.4. [Fed69, Corollary 2.9.20] A function f between open subsets of Carnot groups

is locally absolutely continuous if and only if its distributional derivative is a measure that is

absolutely continuous with respect to H p. If absolute continuity holds then the Radon–Nikodym

derivative of µ is equal to the derivative of f almost everywhere.

We remark that the statement of this lemma usually refers to absolute continuity with respect to

the Lebesgue measure, however, in the case of Carnot groups with Carnot-Carathéodory metrics,

it can be shown that the Hausdorff measure and the Lebesgue measure, the latter with respect

to exponential coordinates, are proportional [LD23, Proposition 8.3.3].
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Definition 4.5. Let µ and ν be two measures that are defined on a measurable space (Ω,Σ). We

say that µ is singular with respect to ν if there exist two disjoint σ-subalgebras A,B ⊆ Σ whose

union is Σ such that µ|A = 0 and ν|B = 0.

Lemma 4.6. [Rud87, Theorem 6.10] Let λ be a positive σ-finite measure on a σ-algebra Σ in a

set X, and let ρ be a measure on Σ. Then, we can write ρ as a sum of two measures,

ρ = ρa + ρs,

where ρs is singular with respect to λ and ρa is absolutely continuous with respect to λ.

The next lemma gives a bound on the integral over a family of curves similar to Lemma 3.18. This

time, however, we obtain a bound in terms of the measure of the set where the Radon-Nikodym

derivative is nonzero.

Lemma 4.7. Let U be an open subset in a metric space X, equipped with two measures µ and ν.

Let Γ be a curve family in X, equipped with a measure dγ. Let p > 1. We assume that, for every

ball B of X that is contained in U ,∫
{γ∈Γ: γ∩B ̸=∅}

dγ ≤ µ
(1

3B
)1−1/p

.

For every ball B ⊆ U , we set ϕ(B) := ν
(

1
3B
)1/p

and we denote by Φ1 the 1-dimensional measure

obtained by Carathéodory’s construction from ϕ. In addition, we assume that there exists a

constant ρ such that, for every ball B, we have µ(2B) ≤ ρµ(B). Let us define

E =
{
x ∈ N : dν

dµ
(x) ̸= 0

}
. (4.1)

Then it holds that∫
Γ

Φ1(γ)dγ ≤ ν(E)1/pµ(E)1−1/p.

Proof. We can assume that µ(U) < ∞. The assumption that µ(2B) ≤ ρµ(B) ensures that, at

almost every x ∈ U , it is

dν

dµ
(x) = lim

r→0

νB(x, r)
µB(x, r)

see for example [Fed69, pp.152]. Let K be a compact subset of U \ E, and let ε > 0. For every

x ∈ K, we choose a ball Bx centred at x with radius at most ε so that ν(1
3Bx) ≤ εpµ(1

3Bx). If

x /∈ K, we choose Bx centred at x with radius at most ε so that Bx ∩K = ∅.

The family {Bx : x ∈ K ∪Kc} covers U \ E, and by Lemma 3.15 we can extract from the fam-
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4 Absolute continuity of quasiconformal homeomorphisms

ily {Bx : x ∈ K ∪Kc} of balls a cover of U \ E by balls {Bi}i∈I , where I is a suitable index set

such that the balls 1
3Bi are pairwise disjoint. Let us denote J = {i : Bi is centred on K}. Then∫

Γ
Φ1

ε(γ)dγ ≤
∑
i∈J

ϕ(Bi)µ(1
3Bi)1−1/p +

∑
i∈I\J

ϕ(Bi)µ(1
3Bi)1−1/p

≤
∑
i∈J

εµ(1
3Bi) +

∑
i∈I\J

ϕ(Bi)µ(1
3Bi)1−1/p

≤ εµ(U) + ν(U \K)1/pµ(U \K)1−1/p.

The first inequality follows from the assumption
∫

{γ∈Γ: γ∩B ̸=∅} dγ ≤ µ(1
3B)1−1/p together with the

observation that, per definition, Φ1
ε is the infimum over sums of the form Φ1

ε(γ) ≤ ∑
i

1i(γ)ϕ(Bi).

The second inequality follows because per choice of ϕ and per choice of the balls Bi we have

ϕ(Bi) = ν(1
3Bx)1/p ≤ εµ(1

3Bx)1/p. The last inequality follows from the fact that the balls 1
3Bi are

pairwise disjoint, and in the second sum they are in addition disjoint from K.

If we now let ε tend to 0 and K tend to U \ E, then the term εµ(U) vanishes, whereas the term

ν(U \K)1/pµ(U \K)1−1/p tends to µ(U \ (U \E)) = µ(E). We obtain the desired inequality.

We can use this result to deduce the absolute continuity of the pushforward measure induced

by a quasiconformal homeomorphism, and thus, by Lemma 4.4, the absolute continuity of the

quasiconformal homeomorphism.

Corollary 4.8. Let X and X ′ be metric spaces equipped with measures µ and ν. Let p > 1.

Assume that there exist positive constants ρ, σ, τ, v such that, if B ⊆ X and B′(x′, r) ⊆ X ′ are

two balls, then

µ(2B) ≤ ρµ(B) (4.2)

and

(σr)p ≤ ν(B′(x′, r′)) ≤ (τr)p. (4.3)

Let Γ be a family of curves in X, equipped with a measure dγ. Assume that for every ball B of X,

vµ(B)1−1/p ≤
∫

{γ∈Γ: γ∩B ̸=∅}
dγ ≤ µ(B)1−1/p. (4.4)

Then for every quasiconformal homeomorphism f : X → X ′ the measure f∗µ is absolutely con-

tinuous with respect to ν.
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Proof. In the following, we take a covering of a curve γ by balls Bi of radius less than ε. By

Lemma 3.15 we can choose this covering such that the balls 1
3Bi are disjoint.

Since f is η-quasisymmetric, for every ball Bi the 3-annulus (1
3Bi, Bi) is mapped by f to an

η(3)-annulus. This means that we can find a ball B′
i such that

B′
i ⊆ f(1

3Bi) ⊆ f(1
3Bi) ⊆ η(3)B′

i.

Then, setting ϕ(B) = ν(1
3B), we have

Φ1(γ) = lim sup
ε→0

Φ1
ε(γ) = lim sup

ε→0

∑
i

ϕ(Bi) = lim sup
ε→0

∑
i

ν
(1

3Bi

)1/p

≥ lim sup
ε→0

∑
i

ν (B′
i)

1/p ≥ lim sup
ε→0

∑
i

σε ≥ σ

η(3)H
1f(γ).

The first inequality follows from the subset relation established above and from the pairwise

disjointness of the balls 1
3Bi, the second inequality follows from the assumption (4.3), and the

third from the definition of the Hausdorff measure.

Let x ∈ X and let r > 0. As f−1 is η-quasisymmetric, and B′(f(x), r), B′(f(x), 2r) is a 2-annulus

which is taken to an η(2)-annulus by f−1, there exists a ball B such that

η(2)−1B ⊆ f−1B′(f(x), r) ⊆ f−1B′(f(x), 2r) ⊆ B.

We may choose B centred at x. If γ intersects with η(2)−1B but is not contained in B, then f(γ)

joins some point in B′(f(x), r) to some point in the complement of B′(f(x), 2r). Its length is

at least r since it intersects both boundaries of B′(f(x), 2r) \ B′(f(x), r), and by the inequality

derived above and the observation that H 1(f(γ)) ≥ lengthf(γ), it follows that

Φ1(γ) ≥ σ

η(3)r. (4.5)

We apply Lemma 4.7 to the set B equipped with the measures µ and (f−1)∗ν and the curve family

Γ(B) =
{
γ ∈ Γ: γ ∩ η(2)−1B ̸= ∅

}
.

Note that the prerequisites are satisfied by the assumptions (4.2) and (4.4). Applying (4.5) and

Lemma 4.7, it follows that

r
σ

η(3)

∫
Γ(B)

dγ ≤
∫

Γ(B)
Φ1(γ)dγ ≤ ρ2ν(f(B))1/pµ(E ∩B)1−1/p.

Since f is η-quasisymmetric and (η(2)−1B,B) is an η(2)-annulus which is sent by f to an (η ◦ η)-
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annulus, there exists a ball B′ ⊆ X ′ such that

B′ ⊆ f( 1
η(2)B) ⊆ f(B) ⊆ (η ◦ η)(2)B′.

The last subset relation together with the assumption (4.3) yields

ν(f(B))1/p ≤ ν((η ◦ η)(2)B′)1/p ≤ τ(η ◦ η)(2)r,

because η(2)−1B ⊆ f−1B′(f(x), r). Thus f(η(2)−1B) ⊆ B′(f(x), r), and B′ ⊆ f( 1
η(2)B), so that

B′ ⊆ B(f(x), r).

The assumption (4.4) and the choice of Γ(B) such that all curves intersect B imply∫
Γ(B)

dγ ≥ vµ(B)1−1/p.

Combining these last three inequalities, one gets, with E as in (4.1), the bound

µ(E ∩B)
µ(B) ≥

(
σv

ρ2τ(η ◦ η)(2)η(3)

)(1−1/p)−1

, (4.6)

where the lower bound only depends on the constants in the statement and the function η.

If p > 1, then 1 − 1
p
> 0, and the inequality (4.6) gives µ(E∩B)

µ(B) ≥ const > 0. It follows that x, the

centre of the ball B, cannot be a µ-density point of X \ E.

We can deduce from this that the Jacobian f ′ of f is almost everywhere nonzero. For every

measurable subset A ⊆ X, we have the inequality (see [Fed69, Theorem 2.9.7])

ν(f(A)) ≥
∫

A
f ′dµ.

If ν(f(A)) = 0 then f ′ vanishes almost everywhere on A. However, we have established that f ′

is almost everywhere nonzero, so that µ(A) = 0 follows. With Lemma 4.4, we conclude that f is

absolutely continuous.

The following result states one of the central properties of quasiconformal homeomorphisms be-

tween Carnot groups with regard to the proof of Theorem 8.1, which is that their differentials are

automorphisms of Carnot groups.

Proposition 4.9. Let N and N ′ be Carnot groups with Hausdorff dimensions p and p′, where

p, p′ > 1, let U ⊆ N and U ′ ⊆ N ′ be open with H p(U) < ∞ and let f : U → U ′ be a qua-

siconformal homeomorphism. Then, f is absolutely continuous, and its differential is a group

isomorphism almost everywhere.
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Proof. We take X and X ′ to be the open subsets of Carnot groups equipped with the respective

Carnot-Carathéodory metrics, and Γ to be the set of orbits of left-invariant vector fields. We

equip X with the measures µ = H p and ν = (f−1)∗H p′ . The assumptions of Corollary 4.8 are

satisfied, as we saw in the proof of Proposition 3.20.

By Proposition 3.1, the differential Df(x) exists at almost every point x and by Corollary 4.8 the

Jacobian f(x) is nonzero. Let x be such a point. Set

ft(x, µ) = etα′ (
f(x)−1f(xe−tαµ)

)
.

Again by Proposition 3.1, the maps ft(x, ·) converge uniformly to Df(x). Consequently, if B

denotes the unit ball in the group, we have
⋂

T →∞

⋃
t>T

ft(x,B) ⊆ Df(x)(B).

Thus, if Df(x) is not surjective, then

0 = H pDf(x)(B) ≥ lim
t→∞

H pft(x,B) = lim
t→∞

etpH pf(B(1, e−t)) = f ′(x),

but from Corollary 4.8 we know that these points form a set of zero measure.

We claim that the surjectivity of Df(x) implies that it is also injective. Recall that the exponential

map of a Carnot group is a diffeomorphism, so that we can associate with Df(x) a globally defined

map g on n = Lie(N). Clearly, if Df(x) is surjective, so is g. But g is a linear map on a finite-

dimensional vector space, and therefore injective. The injectivity of Df(x) follows.

4.2 Absolute continuity on lines

The next step in the study of the regularity of quasiconformal transformations is the so-called ACL

property, which describes absolute continuity of quasiconformal homeomorphisms along almost

every line. We first introduce some terminology.

Definition 4.10. Let X be a metric space with distance function d. A curve γ : I → X is a line

if it realises the distance between any two of its points.

Definition 4.11. Let X be a metric space. A subset a ⊆ X is a k-ball if (a, a) is a k-annulus,

that is, if there exists a ball B such that B ⊆ a ⊆ kB.
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Definition 4.12. Let ϕ be a function taking positive values on the power set of X. For l > 1,

we define a new function on the power set of X by setting

ϕ̃(a) = sup{ϕ(ã) : (a, ã) is a l-annulus}.

Let p > 0. We denote by Φp,k, respectively Φ̃p,k, the measure obtained by Carathéodory’s con-

struction by summing ϕ, respectively ϕ̃, on the k-balls.

Let Γ be a curve family in X, and let p ≥ 0, k ≥ 1 and l ≥ k be real numbers. We define the

coarse modulus of Γ as the collection of numbers Mp,k,l,m(Γ) = inf ϕ̃p,k
l , where the infimum is

taken over all functions ϕ such that for every γ ∈ Γ, we have Φ1,m(γ) > 1.

Proposition 4.13. [Pan89a] The following hold.

• The notion of “almost every curve” is preserved by quasiconformal homeomorphisms.

• In a Carnot group, let Γ be a family of orbits of a horizontal vector field v ∈ V 1. If
∫

Γ dγ > 0,

then Mp,k,l,m(Γ) > 0 for every k ≥ 1, l > 4k and m ≥ 1. In particular, if a property is

satisfied by almost every curve, then it is satisfied by almost every orbit of v.

The following lemma allows to derive absolute continuity of quasiconformal homeomorphisms on

lines, which we later use to deduce global statements from local properties.

Lemma 4.14. Let X and X ′ be metric spaces equipped with measures µ and ν. Let us assume that

there exist constants σ and τ such that, for every ball B ⊆ X and B′ ⊆ X ′, µ(B) ≤ (τdiam(B))1/p,

and (σdiam(B′))1/p ≤ ν(B′). Let f : X → X ′ be a η-quasiconformal homeomorphism such

that (f−1)∗ν is absolutely continuous with respect to µ. Then, the restriction of f to almost

every rectifiable curve is absolutely continuous with respect to 1-dimensional Hausdorff measures.

Proof. Without loss of generality, one can assume ν(X ′) < ∞. Let γ be a rectifiable curve in X.

We define a positive measure by ρ(E) = H 1(f(E)) on γ. By Lemma 4.6, we can decompose ρ

as ρ = uH 1
|γ| + ρs, where ρs is singular with respect to H 1 and uH 1

|γ| is absolutely continuous

with respect to ρ. We set

Γn =
{
γ curve in X : ρs(γ) ≥ 1

n

}
.

If ρs(γ) ̸= 0 then ρ(γ) ̸= 0, but as ρs is singular with respect to H 1, we know that not all

H 1-zero-sets are ρ-zero-sets. It follows that the union of the families Γn is the family of curves
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along which f is not absolutely continuous, and we prove that, for every l,m ≥ 1, we have

Mp,1,l,m(Γn) = 0.

Let R > 0 and set χ(t) = max{1, t
R

}. We define a function ϕ on the subsets a of X by setting

ϕ(a) = χ

(
diamf(a)
diam(a)

)
diamf(a),

where diam(A) denotes the diameter of the set A.

We claim that t ≤ R + tχ(t) for all t > 0. To see that this is true, first note that if χ(t) = 1,

then t ≤ R and t ≤ R + t = R + tχ(t) clearly holds true. If χ(t) = t
R
> 1, then t > R and as

t
R

≤ 1 + t2

R2 holds for t
R
> 1, the inequality t ≤ R + tχ(t) follows.

We insert t = diam(f(a))/diam(a), and then multiply by diam(a) to get

diamf(a) ≤ Rdiam(a) + ϕ(a). (4.7)

On the other hand, for all 0 < s < t, it is χ(t)
χ(s) ≤ t

s
. Note that this is equivalent to demanding

that either t, s ≥ R or t, s ≤ R. We then have ϕ̃(a) = sup{ϕ(ã) : (a, ã) is a l-annulus}, thus

ϕ̃l(a) ≤ η(l)2ϕ(a). (4.8)

Let us now prove that for every curve γ in X and for all intervals E of γ, we have

H 1(f(E)) ≤ const.(RH 1(E) + Φ1,m(E)).

Take a cover {ai}i∈I of E by m-balls with diameter at most ε such that
∑

i

ϕ(ai) ≤ Φ1,m(E) + ε. (4.9)

Since the ai are m-balls, by definition there are balls Bi such that

1
m
Bi ⊆ ai ⊆ Bi.

We take the subfamily {Bi}i∈J that only consists of the balls that intersect E. By Lemma 3.15,

we can extract from the covering {3Bi}i∈J a subcovering with disjoint balls such that the balls 9Bi

cover E. By (4.8), we have

ϕ̃l(a) = sup{ϕ(ã) : (a, ã) is a l-annulus} ≤ η(l)2ϕ(a),

and since (ai, 9Bi) is a 9m-annulus, we can find a ball B such that B ⊆ ai ⊆ 9Bi ⊆ 9mB, by
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choosing B = 1
m
Bi from before, it is

ϕ(9Bi) ≤ η(9m)2ϕ(ai). (4.10)

When ε ≥ diam(ai) is small enough, E is not contained in any of the balls 3Bi. But as E

intersects Bi, we have diam(Bi) ≤ H 1(E ∩ 3Bi), which implies
∑

i

diam(Bi) ≤ H 1(E), (4.11)

since the balls 3Bi are disjoint. Hence, for a uniformly continuous function ε′(ε), it is

H 1
ε′ (f(E)) ≤

∑
i

diam(f(9Bi)) ≤
∑

i

Rdiam(9Bi) + ϕ(9Bi)

≤ 9RH 1(E) + η(9m)2Φ1,m(E) + η(9m)2ε,

this follows from (4.7), (4.9), (4.10) and (4.11). As ρs is singular with respect to H 1, this

proves that for every rectifiable curve γ, we have ρs(γ) ≤ η(9m)2Φ1,m(γ). Consequently, for every

p, k, l,m, n, the coarse modulus is given by

Mp,k,l,m(Γn) ≤ npη(9m)2pϕ̃p,1
l (X).

With (4.8), it is sufficient to prove that Φp,1(X) tends to 0 when R tends to ∞.

For every x ∈ X, we set

Θ(x) := lim sup
B→x

νf(B)
µ(B) .

Let A(t) = {x ∈ X : Θ(x) ≥ tp} and ω(t) = νf(A(t)). If we consider the limit t → ∞, we see

that Θ(x) ≥ tp implies µ(B) → 0 because we assumed ν(X ′) < ∞. But since f is absolutely

continuous, µ-zero measure sets are sent to ν-zero measure sets, so that ω(t) tends to 0 when t

tends to ∞.

We fix ε > 0 and for every x /∈ A(t), we choose a ball Bx centred at x with a radius less than ε

such that

νf(3Bx) ≤ tpµ(3Bx).

As f is quasisymmetric, there is a ball B′ in X ′ such that

B′ ⊆ f(3Bx) ⊆ η(1)B′.
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We then have

ϕ(3Bx) ≤ C
t2

R
f(3Bx)1/p,

where C = C(η, σ, τ) only depends on the constants in the statement. Then

σ

η(1)diamf(3Bx) ≤ σdiam(B′) ≤ ν(B′)1/p ≤ tµ(3Bx)1/p ≤ tτdiam(3Bx),

where the last inequality is one of our assumptions. Considering that χ(t) ≤ t
R

, we can use parts

of both sides of the previous sequence of inequalities to see that

ϕ(3Bx) = χ

(
diam(f(3Bx))

diam(3Bx)

)
diam(f(3Bx)) ≤ (diam(f(3Bx)))2

diam(3Bx) ≤ 3τη(1)2t2

σ2R
νf(Bx)1/p.

Again by Lemma 3.15 we extract a subfamily {3Bi} which covers X \ A(t) such that the Bi are

disjoint, and we obtain

Φp,1
ε (X \ A(t)) ≤

∑
x

ϕ(3Bx)p ≤
(
Ct2

R

)p∑
i

νf(Bi) ≤
(
Ct2

R

)p

νf(X).

As χ(t) ≤ 1, we have σϕ(B) ≤ η(1)νf(B)1/p. Covering f(A(t)) with a set of balls {B}, this yields

Φp,1(A(t)) ≤
(
η(1)
σ

)p

νf(A(t)).

By adding the bounds for Φp,1(A(t)) and Φp,1
ε (X \ A(t)), and considering that the measure Φp,1

is subadditive, it follows that

Φp,1(X) ≤ inf
t>0

{(
Ct2

R

)p

νf(X) + η(1)
σ

ω(t)
}
.

The first summand clearly tends to 0 as R → ∞. Further, as ω(t)→0 as t tends to ∞, it follows

that Φp,1(X) tends to 0 as R tends to ∞. This concludes the proof.

In Corollary 4.8 we saw that quasiconformal homeomorphisms between open subsets of Carnot

groups are absolutely continuous. As lines are rectifiable curves, Lemma 4.14 allows us to conclude

that the restrictions of quasiconformal homeomorphisms to almost every rectifiable curve are

absolutely continuous with respect to 1-dimensional Hausdorff measures.

Proposition 4.15. A quasiconformal homeomorphism between open subsets of Carnot groups

with Hausdorff dimension p > 1 is absolutely continuous on almost every line.

The absolute continuity on lines allows to consider another invariant besides the coarse modulus,

namely the capacity.
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4 Absolute continuity of quasiconformal homeomorphisms

Definition 4.16. Let U be an open subset in a Carnot group N . The space ACLp(U) is the

space of continuous functions u on U which are absolutely continuous on almost every line, and

whose local dilation Lipu is in Lp(U).

A capacitor is an open subset C ⊆ U together with two subsets ∂0C and ∂1C of C, called plates.

The p-capacity of (C, ∂0C, ∂1C) is

inf
{∫

C
Lipp

udH
p : u ∈ ACLp(C) ∩ C0(C), u = 0 on ∂0C and u = 1 on ∂1C

}
.

Remark 4.17. Consider for 0 < r < R the spherical capacitor

C = B(x,R) \B(x, r), ∂0C = ∂B(x, r), ∂0C = ∂B(x, r).

It clearly has a nonzero capacity, which, by invariance of the capacity under dilations, only

depends on the ratio R/r. We denote the capacity of such a spherical capacitor φ(R/r).

Remark 4.18. For our purposes, the exact values of φ is irrelevant, and we only need the

property that φ is increasing as its argument increases.

We are interested in quasiconformal homeomorphisms whose differential has a special form,

namely the product of an isometry and a homothety. They are called 1-quasiconformal homeo-

morphisms, and we can show that 1-quasiconformal homeomorphisms preserve capacities.

Definition 4.19. A map f between Carnot groups N and N ′ is a similarity if f is the product

of a homothety etα and a linear isometry.

Definition 4.20. A homeomorphism between open sets of Carnot groups is 1-quasiconformal if

it is η-quasiconformal for some function η and if its differential is a similarity almost everywhere.

Lemma 4.21. A 1-quasiconformal homeomorphism f : U → V between open subsets of a Carnot

group with Hausdorff dimension p induces an isometry from ACLp(U) to ACLp(V ). In particular,

it preserves capacities.

Proof. By Proposition 4.13 and Proposition 4.15, quasiconformal homeomorphisms map func-

tions that are absolutely continuous along almost every line to functions that are absolutely

continuous along almost every line. If Df(x) is a similarity, we have f ′(x) = Lipf (x)p, so that for

every locally Lipschitz function v on V ,

Lipv◦f (x)p ≤ Lipv(f(x))pLipf (x)p = Lipv(f(x))pf ′(x).
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We conclude that(∥∥∥Lipv◦f

∥∥∥
p

)p

=
∫

Lipp
v◦fdH

p ≤
∫

Lipv(f(x))pf ′(x)dH p =
(
∥Lipv∥p

)p
,

which proves that 1-quasiconformal homeomorphisms preserve the spaces ACLp.

5 Quasiisometries of rank-one symmetric spaces

5.1 The rank-one symmetric spaces

This section introduces the rank-one symmetric spaces and discusses quasiisometries on them. In

Section 5.1, we recall a few facts about symmetric spaces and present models for the irreducible

rank-one symmetric spaces of non-compact type, which we also refer to as hyperbolic spaces. We

show that the boundaries of the rank-one symmetric spaces can be equipped with a Carnot group

structure. This is done in Section 5.2. Finally, in Section 5.3, we show that quasiisometries can be

extended to the boundaries and prove that those extensions are quasiconformal homeomorphisms.

Symmetric spaces are a class of Riemannian manifolds, each point of which is the fixed point of an

involutive isometry. Their isometry groups are Lie groups acting transitively on the manifolds.

Choosing any base point p in a symmetric space X and by Kp denoting the subgroup of the

isometry group Isom (X) fixing p, we can identify X ∼= Isom◦ (X)⧸Kp
. This allows for a powerful

combination of the tools of Riemannian geometry and Lie theory to study these spaces.

Every symmetric space can be decomposed into a product of irreducible symmetric spaces, which

cannot be written as a product space of two symmetric spaces. Each irreducible symmetric space is

of a well-defined type, either compact, non-compact or Euclidean, based on its sectional curvature

being non-negative, non-positive or identically zero respectively. The rank of a symmetric space

is the maximal dimension of a flat, totally geodesic submanifold [Hel78].

There are three families of irreducible rank-one symmetric spaces of non-compact type and one

exceptional case. The three families are the real hyperbolic spaces that we denote RHn, the

complex and quaternionic variants CHn and HHn, where for all three families we have n ≥ 2,

and the exceptional case is the octonionic hyperbolic plane OH2. The real hyperbolic spaces have

constant sectional curvature −1, whereas the other hyperbolic spaces have sectional curvature

between −4 and −1.

34



5 Quasiisometries of rank-one symmetric spaces

Convention. We agree that by rank-one symmetric space we always refer to an irreducible rank

one symmetric space of non-compact type. We will also refer to the rank-one symmetric spaces

as hyperbolic spaces.

Notation. For general statements, we will use the notation KHn to denote an arbitrary hyper-

bolic space, where K ∈ {R,C,H,O} and n ≥ 2. Whenever K = O, we take n = 2.

As quotients of the connected component containing the identity of their isometry groups by a

point stabiliser, we may identify the rank-one symmetric spaces with

RHn ∼= SOo(n, 1)⧸SO(n),

CHn ∼= SU(n, 1)⧸S(U(n) × U(1)),

HHn ∼= Sp(n, 1)⧸Sp(n) × Sp(1),

OH2 ∼= F4⧸Spin(9),

see for example [Hel78, pp.452]. Due to their non-positive sectional curvature, we can find global

parameterisations of the hyperbolic spaces by the Cartan-Hadamard theorem, and it is useful to

choose parameterisations that are derived from these Lie group structures. This leads to the fol-

lowing model for the three families of hyperbolic spaces (see also [LD23, Section 10]). The case of

the octonionic hyperbolic plane cannot be treated in the same way. We only provide a brief sketch

of a way to model OH2 and refer the reader to [Mos73, Section 19] for a comprehensive treatment.

From now on we sometimes work with real, complex and quaternionic vectors and matrices

explicitly. We use the following conventions for our notation, which we state explicitly only for

the quaternions. Our notation for the other cases is analogous and can be viewed as a special

case of the notation introduced below.

Notation. A quaternion u can be written as u = a+ ib+ jc+ kd, where a, b, c, d ∈ R. We define

• the conjugate u = a− ib− jc− kd,

• the absolute value |u| =
√
uu,

• the real part Re u = u+u
2 ,

• the imaginary part Im u = u−u
2 .

Further, if A is a vector or matrix with quaternionic entries, we define its Hermitian transpose A∗

as the matrix that is obtained by transposing A and conjugating every entry.
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Definition 5.1. Let K ∈ {R,C,H} and n ≥ 2. We model the hyperbolic space KHn as the

semidirect product

KHn :=
(
Kn−1 ⋉ Im K

)
⋊R+ (5.1)

with the multiplication law

(v, s, a)(w, t, b) = (v + aw, s+ at+ Im (aw∗v), ab),

and equip it with the left-invariant Riemannian metric g given by

g(0,0,1)((v, s, a), (v, s, a)) = a2 + v∗v

2 − s2

4 , (5.2)

where (v, s, a) ∈ T(0,0,1)KHn ∼= Kn−1 × Im K × R.

Note that the square of any nonzero s ∈ Im K is a negative real number, so that the inner

product g(0,0,1) is indeed positive definite.

The octonionic hyperbolic plane is different than the others because multiplication of octonions is

not associative, so that we cannot define octonionic vector spaces. To deal with this, one uses the

fact that subalgebras of O with two generators are associative to define an associative O-algebra

whose automorphism group is F4. The equivalence relation on the set of triplets of octonions

which lie in one associative subalgebra defined by z ∼ w if there exists some λ in an associative

subalgebra of O containing the entries of z such that w = zλ yields a quotient space that can be

thought of as a projective octonionic plane, and a subset of it is identified with OH2. Its point

stabilisers are, up to conjugation, isomorphic to Spin(9) [Mos73].

To illustrate our further considerations, it is often useful to have an explicit model, such as (5.1),

of the hyperbolic spaces at hand. Dealing with the case of OH2 separately every time would go

beyond the scope of this thesis, so that we sometimes omit an explicit treatment of it. However,

all arguments that are essential for the proof of Theorem 8.1 are valid in full generality and apply

to OH2 as well as to the other cases.

5.2 Boundaries at infinity and their Carnot group structure

One can attach to the hyperbolic spaces a sphere at infinity, and we will see that it naturally

carries a Carnot group structure. To define this formally, we introduce the following notion.
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Definition 5.2. Two geodesics c and c′ are asymptotic if there exists a constant K such that

d(c(t), c′(t)) ≤ K for all t ≥ 0.

We use this to define an equivalence relation ∼ on the set of geodesics:

c ∼ c′ :⇔ c, c′ are asymptotic.

It is not difficult to show that ∼ defines an equivalence relation, see for example [EO73, p.48].

We are now equipped to define the boundary at infinity of the hyperbolic spaces.

Definition 5.3. We define the boundary at infinity of KHn, denoted ∂KHn, as the set of equiv-

alence classes of geodesics for the equivalence relation ∼.

We sometimes omit the words ”at infinity” and just speak of the boundary of a hyperbolic space.

An explicit description of the boundaries can be obtained, and we briefly sketch a possible way

of doing so, following [BH99, Chapter II.10]. We start by introducing horospheres in KHn.

These are the limits of sequences of unboundedly large spheres which are all tangent to one fixed

hyperplane.

Definition 5.4. The spheres centred at y ∈ KHn are the level sets of the functions

ρy(x) = d(x, y).

To construct a sequence of increasingly large spheres with a common tangent hyperplane starting

with some sphere ρ−1
y (r), we fix a geodesic c that passes though the centre of the ball ρ−1

y (r) at

time t = 0. This geodesic will be orthogonal to the common tangent hyperplane.

Let x be one of the two points where the geodesic meets the sphere ρ−1
y (r), for example we choose

x ∈ c|(−∞,0] ∩ρ−1
y (r). Let Hx,r be the hyperplane containing x that is tangent to ρ−1

y (r). This will

be the common tangent hyperplane.

For t ≥ 0 we set rt ∈ [0,∞) such that ρ−1
c(t)(rt) is tangent to Hx,r. As t → ∞, the sequence of

balls ρ−1
c(t)(rt) converges and we call its limit the horosphere centred at [c],

Hr,[c] = lim
t→∞

ρ−1
c(t)(rt).

We fix a point o ∈ KHn, and a geodesic c such that c(0) = o. Let A denote the one-parameter

group of transvections along c, that is, A = {A(t) : t ∈ R}, where A(t).c(t′) = c(t+ t′), and let N

be the subgroup of Isom (KHn) that acts simply transitively on the horosphere centred at [c]

containing o. The hyperbolic space can then be identified with N ⋊A. Up to conjugation, which
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geometrically can be thought of as moving the base point o and choosing another geodesic c, these

are exactly the groups from (5.1), that is, A is the abelian group (R+, ·), and N = Kn−1 ⋉ Im K,

with multiplication law

(v, s)(w, t) = (v + w, s+ t+ Im (w∗v)).

We remark that it also holds for the octonionic hyperbolic plane that there is a nilpotent Lie

group N and an abelian Lie group A with OH2 ∼= N ⋊ A. This is evident from the Iwasawa

decomposition [Hel78, p.403].

We proceed by defining a map from N to ∂KHn \ {[c]}, by setting c− : R → KHn, t 7→ c(−t), and

n 7→ [n.c−]. It can be shown that this map is a homeomorphism from N to ∂KHn \ {[c]}, and

we conclude that the boundaries at infinity of the hyperbolic spaces, after removing one point,

are identified with the groups N . Usually, the point [c] ∈ ∂KHn is called ∞, and we adopt this

notation from now on.

In the following, we show that N is a Carnot group and describe its subRiemannian structure.

If K = R, then the group N is abelian. In the other cases, the Lie algebra n admits a gradation

n = V 1 ⊕ V 2, where we identify V 1 with Kn−1 and V 2 with Im K. The Lie bracket can be

expressed as

[x, y] = Im (y∗x) for x, y ∈ V 1, (5.3)

which shows that [V 1, V 1] = V 2, and V 2 is the centre of n that we denote Z(n). This defines a

derivation α on n such that V 1 = ker(α− 1) by setting α|V 1 = idV 1 and α|V 2 = 2idV 2 , so that N

with the derivation α is a Carnot group. Further, we obtain a distribution ∆ on N by setting

∆p = deLp(V 1) for p ∈ N. (5.4)

Following Section 2.2, by choosing an inner product on V 1, we obtain a Carnot-Carathéodory

metric on N . This is done explicitly below.

It is worth noting that α can also be given a geometric meaning. Indeed, the transvection A(1)

along c is precisely the Lie group equivalent of α, and more generally we have

A(t) = etα.

In the following we use the identification of KHn with N ⋊ A to denote points in KHn by
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5 Quasiisometries of rank-one symmetric spaces

(n, t) ∈ N ⋊A. Given our choice of a base point in the hyperbolic space, the point o corresponds

to (0, 1), which is the identity element in N . The metric g of KHn that was defined in (5.2) can

be written as

g(n,t) = gN
(n,t) ⊕ dt2, (5.5)

where the left-invariant metrics gN
(n,t) on N have matrices of the form

gN
(0,t) =

e2tI(n−1) dimR K 0
0 e4tIdimR Im K

 (5.6)

in the gradation V 1 ⊕ V 2. This naturally (but not canonically!) provides us with a left-invariant

metric on the boundary at infinity by restricting the Riemannian metric on KHn to the horosphere

centred at ∞ containing o ∈ KHn. Since the horospheres are embedded submanifolds of KHn,

it is clear that the restriction of the Riemannian metric to a horosphere is again a metric. When

t → ∞, the distance function that is induced by e−2tgN
(n,t) converges to a Carnot-Carathéodory

metric d∞ on N .

Note that in the definition of d∞ we made two choices, the choice of a base point o ∈ KHn

and the choice of a geodesic through o, or equivalently of a point ∞ in the sphere at infinity.

The left-invariance of the metric gN
(n,t) implies that if we change the base point to another base

point that lies on the same horosphere centred at ∞, we do not change the Carnot-Carathéodory

metric d∞. However, changing the origin of the geodesic c leads to a proportional metric. This

expresses the fact that the automorphism etα is a similarity of ratio et for d∞.

It is less obvious to see how the choice of a different point ∞ ∈ ∂KHn changes the metric.

Lemma 5.5. When the point at infinity ∞ is changed, the Carnot-Carathéodory metrics d∞ are

conformal. In particular, the distribution ∆ does not depend on the choice of ∞.

These observations allow us to speak of quasiconformal transformations between boundaries of

symmetric spaces, independently of the two choices made above. We refer the reader to [EHS93]

for a proof of the previous lemma.

5.3 Quasiisometries and their extensions to the boundaries

In this section, we introduce quasiisometries and show that we can extend quasiisometries of

rank-one symmetric spaces to their boundaries. From the fact that for each quasigeodesic there is
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a geodesic such that the geodesic and the quasigeodesic are contained in tubular neighbourhoods

of each other, we deduce that two quasiisometries with the same extension to the boundary differ

from each other only by a bounded amount. Finally, we show that the extension of a quasiisometry

of a rank-one symmetric space is a quasiconformal map of the boundary.

Definition 5.6. Let X and X ′ be metric spaces with distance functions d and d′ respectively. A

quasiisometric embedding of X into X ′ is a map f : X → X ′ with two constants L ≥ 1 and C ≥ 0

such that for all x, y ∈ X it holds that

−C + 1
L
d(x, y) ≤ d′(f(x), f(y)) ≤ Ld(x, y) + C.

A quasiisometry of X onto X ′ is given by a pair of quasiisometric embeddings f : X → X ′ and

g : X ′ → X such that, for all x ∈ X and x′ ∈ X ′, d(g ◦ f(x), x) ≤ C, d′(f ◦ g(X ′), x′) ≤ C ′.

A quasigeodesic in X is a quasiisometric embedding of R into X.

Quasiisometries of hyperbolic spaces can be extended to the boundaries as follows. We let

f : KHn → KHn be a (L,C)-quasiisometry. For all points [c] ∈ ∂KHn we set

f([c]) := [f(c)]. (5.7)

We claim that this definition does not depend on the choice of geodesic c ∈ [c]. To prove this

claim, we need an explicit expression of the distance on the boundary. Recall that there is no

canonical Carnot-Carathéodory metric on the boundary, but that, by Lemma 5.5, different choices

lead to conformal metrics, and that thus all choices induce the same topology. We claim that the

following defines such a distance function. This is proven for example in [Bou95].

Fact 5.7. Let [c], [c′] ∈ ∂KHn. We define

([c], [c′])(∞,o) := 1
2 lim

t→∞
(2t− d(c(t), c′(t))),

where d is the distance on KHn. The distance on ∂KHn \ {∞} can then be defined as

d∞([c], [c′]) = e−([c],[c′])(∞,o) .

We can now confirm that the definition of f : ∂KHn → ∂KHn as in (5.7) does not depend on the

choice of geodesic in [c]. Let therefore c, c′ ∈ [c]. We conclude that

d∞([f(c)], [f(c′)]) = e−([f(c)],[f(c′)])(∞,o) = lim
t→∞

e− 1
2 (2t−d(f(c(t)),f(c′(t)))).
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Since f is a (L,C)-quasiisometry, we have

e− 1
2 (2t+C− 1

L
d(c(t),c′(t))) ≤ e− 1

2 (2t−d(f(c(t)),f(c′(t)))) ≤ e− 1
2 (2t−Ld(c(t),c′(t))−C), (5.8)

and since lim
t→∞

d(c(t), c′(t)) = 0, it follows that d∞([f(c)], [f(c′)]) = 0.

Remark 5.8. Note that (5.8) implies that we could as well have used quasigeodesics to define

the extension of f to the boundary.

Remark 5.9. It follows from the definition of d∞ that if a sequence of quasiisometric embeddings

fi : KHn → KHn, where all fi have the same constants L and C, converges uniformly, then the

extensions f̄i : ∂KHn → ∂KHn converge uniformly as well.

Our next goal is to prove that two quasiisometries that extend to the same map on the boundary

differ from each other only by a globally bounded amount. To do so, we need to see that for every

quasigeodesic there exists a geodesic that differs from the quasigeodesic by a globally bounded

distance. This is essentially a consequence of the negative curvature of the hyperbolic spaces. We

omit a proof of this rather well-known result and refer the reader to [DK18, Theorem 11.72].

Lemma 5.10. Let KHn be a hyperbolic space. For every quasigeodesic c of KHn, there ex-

ists a geodesic c′ contained in a tubular neighbourhood of c such that c is contained a tubular

neighbourhood of c′. The width τ of these tubular neighbourhoods only depends on L and C.

This lemma can be used to show that a quasiisometry is determined by its extension to the

boundary at infinity up to transformations that move points by a bounded amount. Before we

prove this result, we introduce the following notation.

Notation. For a, b ∈ KHn we denote by [a, b] the geodesic segment with endpoints a and b.

Lemma 5.11. Let f, g : KHn → KHn be two (L,C)-quasiisometries of a hyperbolic space. If f

and g have the same extension to the sphere at infinity ∂KHn, then for every x ∈ KHn, we have

d(f(x), g(x)) ≤ τ ′(L,C).

Proof. Let g̃ be an inverse of g as in Definition 5.6, that is, there are constants C1, C2 such that

d(g ◦ g̃(x), x) ≤ C1, d(g̃ ◦ g(x), x) ≤ C2.

Thus, up to replacing f with the (L2, (L + 1)C)-quasiisometry g̃ ◦ f , we may assume that g is

the identity map. Fix x ∈ KHn and let c be the geodesic line through x that is orthogonal

to the geodesic segment [x, f(x)]. Being the composition of a quasiisometry and a geodesic,
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f ◦ c is a quasigeodesic. By assumption, the quasigeodesic f ◦ c has the same extension to the

sphere at infinity as c, so that it is asymptotic to c. By Lemma 5.10, there is a geodesic c′

that is contained in a τ(L,C)-tubular neighbourhood of f ◦ c, and by transitivity, c and c′ are

asymptotic, thus f ◦ c lies in the τ ′(L,C)-neighbourhood of c. By orthogonality and since x ∈ c,

we have d(x, f(x)) = d(f(x), c), and it follows that d(x, f(x)) ≤ τ ′(L,C).

Finally, we show that quasiisometries of rank-one symmetric spaces extend to quasiconformal

maps of the boundary. This will allow us to reduce the proof of Theorem 8.1 to investigating the

properties of quasiconformal maps between the Carnot groups that can be associated with the

boundaries.

Proposition 5.12. If f is a (L,C)-quasiisometry of a rank-one symmetric space KHn, its ex-

tension to the boundary at infinity is η-quasiconformal, where η only depends on L and C.

Proof. Consider the family of (L,C)-quasiisometries

F = {h ◦ f ◦ g : g ∈ Isom (KHn) , h ∈ Isom (KHn)} .

Let us choose a compact subset K ⊆ KHn and a point x ∈ KHn, and consider the subfamily

of elements of F which send x into K. As all elements of F are quasiisometries with the same

constants, we can apply the Arzelà-Ascoli theorem to see that this subfamily is precompact in

the topology of uniform convergence on compacts.

Recall from Remark 5.8 that uniform convergence on compacts of a family of quasiisometries

of KHn implies uniform convergence on compacts of the family of extensions of the quasiisometries

to the boundary in the topology of the boundary.

We translate the defining property of the subfamily of F that sends x into K to a property of

the extensions to the boundary. To do so, we observe that the space of triples of distinct points

in ∂KHn can be identified with the space of orthonormal pairs of tangent vectors of KHn, which

is the same as KHn as far as quasiisometries are concerned.

It follows that the extension of F between the spheres at infinity, which we call F , has the

property that if K1, K2 and K3 are three disjoint closed subspaces of ∂KHn and x1, x2, x3 are

three distinct points of KHn, then the subfamily of F which sends xi intoKi for all i is precompact.

To see that the extension of f to ∂KHn, that we still denote f , is quasisymmetric, we need to
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prove that the distorsion

Hf (x) = lim sup
r→0

max {|f(z + h) − f(z)| : |h| = r}
min {|f(z + h) − f(z)| : |h| = r}

of f is bounded at x ∈ ∂KHn \ {∞}. Let N be the Carnot group associated with ∂KHn \ {∞}.

As N acts on itself by isometries, we may assume that x is the neutral element, otherwise we

replace f by f ◦ Lx−1 . Let us assume that f(x) ̸= ∞. Again, one may assume that f(x) is the

neutral element of N , otherwise we replace f by Lf(x)−1 ◦ f . Note that this is a priori not defined

on ∞ and (f ◦ Lx−1)−1(∞), but can be continuously extended to include those two points.

For every ε > 0, let gε be an isometry of KHn that restricts to the automorphism etα on the

horosphere centred at ∞. This horosphere can also be identified with N , as described in Sec-

tion 5.2. We choose t = t(ε) such that etα sends the unit k-annulus ak(x, 1) = (B(x, 1), B(x, k))

on the k-annulus ak(x, ε) = (B(x, ε), B(x, kε)). Note that it is irrelevant what gε does on the rest

of KHn, since this is not visible on ∂KHn \ {∞}.

Fix a point y in ∂B(x, 1). Let hε be an isometry of KHn that, similarly as gε, restricts to the

automorphism e−sα on a horosphere centred at ∞ such that hε ◦ f ◦ gε(y) ∈ B(f(x), 1). Hence,

for ε → 0, gε ”zooms in”, whereas hε ”zooms back out”.

When ε tends to 0, we have that gε(y) tends to x. Hence hε has a dilating effect in the neigh-

bourhood of f(x). This shows that hε(f(∞)) tends to ∞. We can now apply the criterion for

precompactness of the family {hε ◦ f ◦ gε : 0 < ε < 1} by choosing x1 = x, x2 = y, x3 = ∞ and

K1 = {f(x)}, K2 = ak(f(x), 1), K3 = ∂KHn \B(f(x), 2k), where k is such that ∞ ∈ K3. Indeed,

we have hε ◦ f ◦ gε(xi) ∈ Ki. Note that this choice of K1 only works because we assumed that x

and f(x) are the identity element of N .

We can repeat this argument for other points in ∂B(x, 1). Note that this may change hε, but we

still reach the conclusion that the thus obtained subfamilies of F are all precompact. It follows

that the family of subsets hε ◦f ◦gε(∂B(x, 1)) is compact. Hence points in hε ◦f ◦gε(∂B(x, 1)) are

a finite distance away from both f(x) and ∞, which means that they are contained between two

balls B(f(x), r) and B(f(x), R), where r and R both depend on the quasiisometry constants L

and C. This is uniform with respect to x, so that f is η-quasisymmetric, and η depends only

on L and C. Repeating this argument for f−1 completes the proof.
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6 Graded automorphisms of the boundaries at infinity

6.1 The cases of the quaternionic hyperbolic spaces and the octonionic hy-

perbolic plane

Recall that a 1-quasiconformal homeomorphisms is a quasiconformal homeomorphism whose dif-

ferential is a similarity, that is, the product of a homothety etα and an isometry.

From Proposition 3.1 and Proposition 4.9 we know that the differential of any quasiconformal

homeomorphism is an automorphism of a Carnot group. Since the exponential map is a diffeo-

morphism, this implies that there is a corresponding Lie algebra automorphism. The Lie algebra

is graded, hence the automorphism preserves the gradation. We can make this precise.

Definition 6.1. Let N be a Carnot group whose Lie algebra n has a gradation n = V 1 ⊕ V 2.

A graded automorphism of n is given by two automorphisms A ∈ GlR(V 1) and B ∈ GlR(V 2) such

that, if x, y ∈ V 1, we have

[Ax,Ay] = B[x, y].

In this section, we will see that in the quaternionic and the octonionic case, all graded auto-

morphisms of n = Lie(N), where N is the Carnot group associated with the boundaries of the

respective spaces, are similarities, which is not true for the boundaries of the real and complex

hyperbolic spaces. This is essential to understanding why there is a clear difference in the prop-

erties of quasiisometries of the real and complex and the quaternionic and octonionic cases in

Theorem 8.1. As always, our proof mainly follows Pansu’s original proof, but in the last steps of

the proof of Proposition 6.2, we have included additional explanations from [Bou18, Lemma 7.6].

Proposition 6.2. Let KHn be a rank-one symmetric space and let N be the Carnot group associ-

ated with ∂KHn \{∞}. If KHn = HHn or KHn = OH2, then any graded automorphism of n is a

similarity, that is, it is the product of an isometry of Kn−1 and an automorphism etα. Further, the

group of graded automorphisms of n coincides with the group of extensions of isometries of KHn

that fix a geodesic.

Recall that the Lie algebra n of the groups N that we associate with the boundary of a rank-one

symmetric space is nilpotent of class 2. It is graded by n = Kn+1 ⊕ Im K and its Lie bracket is
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defined by (5.3). We can endow the subspace Kn−1 with the inner product

⟨x , y⟩ = Re
(

n−1∑
i=1
xiyi

)
. (6.1)

A graded automorphism of n is given by two automorphisms A ∈ GlR(Kn−1) and B ∈ GlR(Im K)

such that, if x, y ∈ Kn−1, we have [Ax,Ay] = B[x, y]. To show that this is a similarity, we prove

that A is the product of a homothety and an isometry of Kn−1.

Consider the group D of graded automorphisms of n with determinant equal to 1. This is sufficient

since the full group of graded automorphisms is a semidirect product of D and {etα : t ∈ R}.

Lemma 6.3. Let M be the group of extensions of isometries of KHn that fix a geodesic. Then M

is a subgroup of D.

Note that on ∂KHn, these extensions are maps that fix a set of two points, namely the endpoints

of the geodesic which the original maps of the hyperbolic spaces leave invariant.

Proof. Let f be an isometry on KHn that fixes a geodesic c, and choose ∞ = [c] ∈ ∂KHn.

As shown in Section 5.2, upon fixing a base point o ∈ KHn, we can identify KHn = N ⋊ R,

with the Riemannian metric defined by (5.5) and (5.6). This metric is left-invariant on N . If we

choose o = c(0), then f has the form

f = (b, At) ∈ Aut(N) ⋊ {translations on c}. (6.2)

Let f̄ be its extension to ∂KHn. It is evident from (6.2) that f̄ = b. Since the exponential

map of N is a global diffeomorphism, there is a unique Lie algebra homomorphism β ∈ Aut(n)

with exp(β(n)) = b(exp(n)) for all n ∈ n, and since f is an isometry, it follows from the form

of g(0,t) that β is a graded automorphism.

When K = H we have M = Sp(n− 1)Sp(1). When K = O, then M is the subgroup of O(O) that

is the image of Spin(7) in the spin representation. We will prove that D = M . To do so, first

we observe that the Lie algebras are the same in the case of the hyperbolic planes, and later we

extend this to the Lie groups. We treat the case of the quaternionic hyperbolic plane first. In the

case that N = ∂HH2 \{∞}, the Lie algebra of the group that contains the graded automorphisms

of N with determinant equal to 1 is contained in sl(4,R).

Lemma 6.4. The Lie subalgebra so(4) is maximal in sl(4,R).

Proof. Since sl(4,R) consists of traceless 4×4-matrices and every matrix can be uniquely decom-
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posed into a sum of a symmetric and an antisymmetric matrix, there are two subalgebras of sym-

metric traceless and antisymmetric matrices, denoted S0R4 and Λ2R4 respectively. Clearly Λ2R4

is isomorphic to so(4) as a Lie algebra. Any Lie subalgebra containing so(4) is SO(4)-invariant.

SO(4) acts on S0R4 irreducibly, and it follows that such a Lie subalgebra of sl(4,R) is either so(4)

or sl(4,R).

Since the Lie algebra of D cannot be all of sl(4,R), and sp(1) ⊕ sp(1) ∼= so(4), the Lie algebras

of D and M are equal.

The second lemma treats the case of the octonionic hyperbolic plane. The Lie algebra of the

group that contains the graded automorphisms of N with determinant equal to 1 in the case

that N = ∂OH2 \ {∞} is contained in sl(8,R).

Lemma 6.5. The Lie subalgebras of sl(8,R) containing spin(7) are sl(8,R), so(8) and spin(7).

Proof. We decompose sl(8,R) into irreducible components under Spin(7). By V we denote the

spin representation of Spin(7). We can then view gl(8) as V ∗ ⊗ V .

The representation V of Spin(7) is associated to the fundamental weight w̄3. The representa-

tion V ∗ ⊗ V is isomorphic to V ⊗ V , and it contains an irreducible component U with dominant

weight 2w̄3. An application of Weyl’s character formula show that dimU = 35 [Bou95]. It is

easy to see that the spin representation is a homomorphism of so(7) into sl(8,R) with irreducible

image W whose dimension is 21.

There is another subspace of gl(8) that we know to be invariant under Spin(7). This is the

subspace of dimension 7 in sl(8,R) spanned by elements of Im O, acting by octonionic left-

multiplication. Let us call this subspace Z. Clearly, this is not the trivial representation of Spin(7),

and since Spin(7) has no nontrivial irreducible representation of dimension less than 7, it follows

that Z is isomorphic to the natural representation of SO(7), and thus Z is irreducible.

We obtain the decomposition of sl(8,R) in irreducible components sl(8,R) = U ⊕ W ⊕ Z. This

leaves only four possibilities for a subspace of sl(8,R) containing W . These are W = spin(7),

W ⊕ Z = so(8),W ⊕ Z ⊕ U = sl(8,R), or U ⊕ W . We can prove that the last one is not a Lie

subalgebra. Let us define

a =
0 1

1 0

 , b =
1 0

0 1

 , c = 1
2[a, b] =

0 −1
1 0

 .
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We denote by A, respectively B and C, the 8 × 8-matrix that one obtains by concatenating four

diagonal blocks equal to 1
2a, respectively to b and c. Then A,B ∈ U and [A,B] = C ∈ Z,

since C is the matrix of the left multiplication by an element of Im O in the standard basis of the

octonions. This finishes the proof that U ⊕W is not a Lie subalgebra, so that the Lie subalgebras

of sl(8,R) containing spin(7) are sl(8,R), so(8) and spin(7).

We remark that the Lie algebra of D in the case of the octonionic hyperbolic plane must thus

be spin(7), see for example [CS03, Chapter 8]. It follows that the Lie algebras of D and M are

equal in the octonionic case, as well.

We now turn to the proof of Proposition 6.2. For the cases of the quaternionic and octonionic

hyperbolic planes, we make use of the previously established equality of the Lie algebras of M

and D.

Proof (of Proposition 6.2 for the case HH2 or OH2). From Lemma 6.4 and Lemma 6.5 we know

that Lie(M) = Lie(D). Given that M is a subgroup of D, we conclude that M is the connected

component of D containing the identity. Conjugation by any element d ∈ D is a continuous map

on M , which we denote Cd, and since M is connected it follows that Cd(M) ⊆ M for all d ∈ D,

and thus D is contained in the normaliser of M that we denote ND(M).

The Centraliser-Normaliser theorem implies that ND(M)⧸CD(M) ⩽ Aut(M). Since M has no

outer automorphisms, and the set of inner automorphisms of M is isomorphic to a subgroup

of M , we have D ⩽ CD(M)M . In both cases, M acts irreducibly on K, hence by Schur’s lemma

we have CD(M) ⊆ {+I,−I} ⊆ M , and M = D follows.

A different treatment is required to complete the proof for the other quaternionic cases.

Proof (of Proposition 6.2 for the case HHn and n ≥ 3). Let A be a graded automorphism of n,

that is, A ∈ GlR(Hn−1) and there exists B ∈ GlR(Im H) such that [Ax,Ay] = B[x, y]. The simple

calculation, where x, y ∈ Hn−1 and λ ∈ Im H,

⟨y , λx⟩ = Re
n−1∑
j=1

yj(λx)j =
Im

n−1∑
j=1

yjxj

 λ̄
shows that [x, y] = 0 if and only if y ⊥ xIm H. As (xH)⊥ is invariant when multiplied by

imaginary numbers, any element y that commutes with (xH)⊥ is orthogonal to (xH)⊥, hence it is

in xH. This implies that for all x ∈ Hn−1 ⊆ n such that x ̸= 0, the quaternionic line xH is exactly
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the bicommutant of x, which is defined as Cn (Cn(x)), the centraliser of the centraliser of x.

Now it is easy to see that A preserves the quaternionic lines, since A preserves the bicommutant

of x for every x ∈ N . Let y such that [x, y] = 0. Let z ∈ Cn(Cn(x)) = xH. Then

[y, Axλ] = [y, Az] = Im y∗(Az),

so that A indeed preserves the quaternionic lines. The fundamental theorem of affine geometry

(see for example [Ber87, Theorem 2.6.3]) implies that A is H-skew linear, that is, there exists a

ring automorphism σ of H such that for every x ∈ Hn−1 and λ ∈ H, A(λx) = σ(λ)A(x). Since

the automorphisms of H are inner, σ is given by conjugation by µ for some µ ∈ H \ {0}. Real

numbers commute with the quaternions, thus we may assume |µ| = 1. We then have σ ∈ Sp(1),

and conclude that A ∈ GlH(n− 1)Sp(1).

Up to composing A with an element of Sp(n − 1) that takes Ax to Hx, we may assume that A

fixes a quaternionic line Hx. Note that the bracket Λ2Hx → Im H is surjective, consequently,

B ∈ End(Im H) is determined by the restriction of A to the line Hx.

Now consider y = µx ∈ Hx. Then [x, y] = [x, µx] = Im µ |x|2, where |x|2 = ⟨x , x⟩, and

BIm µ |x|2 = B[x, y] = [Ax,Aµx] = [Ax, µAx] = Im µ |Ax|2 ,

so up to multiplying A on the right with a nonzero quaternion such that |x| = |Ax|, we may

assume B = id. We show that [Ax,Ay] = [x, y] implies that A is an isometry of Hn−1.

The Lie bracket on V 1 can be expressed as

[x, y] = ωi(x, y)i+ ωj(x, y)j + ωk(x, y)k, (6.3)

where ωα is a symplectic form on V 1 such that the above holds. These are given by

ωα(x, y) = −⟨x , Tαy⟩,

where Tα is right multiplication by α for α ∈ {i, j, k} .

Now let A ∈ GlR(Km−1) such that [Ax,Ay] = [x, y]. For α ∈ {i, j, k} we then have that it must

be ωα(Ax,Ay) = ωα(x, y), and it follows that A∗TαA = Tα. Taking the inverse on both sides and

considering that T−1
α = −Tα, we conclude ATαA

∗ = Tα. It follows that

ATiTj = Ti(A∗)−1Tj = TiTj.
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Further, we see that TiTj = Tk, and thus

Tk = A∗TkA = A∗ATk,

which implies that A∗A = id. It follows that A is an isometry of Hn−1, and then generally, we

have A ∈ Sp(n− 1)GlH(1).

Corollary 6.6. Let N be the Carnot group associated with the boundary at infinity of a quater-

nionic hyperbolic space HHn or the octonionic hyperbolic plane OH2. Any quasiconformal ho-

meomorphism between open subsets of N is 1-quasiconformal.

Proof. Proposition 3.1 shows that any quasiconformal homeomorphism of such a Carnot group

has a differential almost everywhere, and by Proposition 6.2, this differential is a similarity.

6.2 The real and the complex case

Proposition 6.2 does not hold for K = R or K = C. This is why Theorem 8.1 cannot be extended

to quasiisometries of the real and complex hyperbolic spaces. In this section, we provide concrete

examples to demonstrate that not every quasiconformal homeomorphism of ∂KHn corresponds

to a similarity for K = R and K = C.

In the case of the real hyperbolic space, when the sectional curvature is constant, the group N

is abelian and the derivation α is the identity, so that we have etα = etIn−1. Any linear map

A ∈ GlR(Rn−1) \ CO(n− 1) is therefore a graded automorphism of N that is not a similarity. For

example, for n = 3, if we choose A = diag(2, 1), we can define a map on RH3 by setting

f : R2 ⋉R → R2 ⋉R

(n, a) 7→ (eaAn, a).

It is easy to see that, up to choosing another base point in RH3 and another point ∞ ∈ ∂RH3,

the quasiisometry f extends to A on ∂RH3 \ {∞}, and that its differential, for example at the

point 1 ∈ N ∼= ∂RH3 \ {∞}, is given by Df(1) = A. However, if we extend A to a map of the

sphere S2, for example by composing it with a stereographic projection and fixing the point ∞,

we see that the resulting map is not conformal. This counterexample can easily be extended to

the higher-dimensional real hyperbolic spaces. In the case of RH2, an example illustrating that

not every quasiconformal homeomorphism of the boundary corresponds to a similarity of N is
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given by any diffeomorphism of S1 which stretches the sphere non-uniformly.

For the complex hyperbolic space CHn, we have n = Cn−1⊕iR and the Lie bracket is the standard

symplectic form on Cn−1. The group of graded automorphisms is the conformal symplectic group

CSp(2(n − 1),R), which is larger than the group of similarities U(n − 1) ⋉ {etα : t ∈ R}. We

remark that the subgroup of Sp(2(n − 1),R) isomorphic to U(n − 1) can be characterised as

Sp(2(n− 1),R) ∩ O(2(n− 1)) [Arn89, p.225]. Hence, we can choose for example for n = 2,

A =
1 1

0 1

 ∈ Sp(2,R) \ U(1).

Every z ∈ V 2 can be expressed as z = [x, y] for some x, y ∈ V 1, so that A can be used to define

a map B : V 2 → V 2 by requiring that for z = [x, y] we have Bz = [Ax,Ay]. We can thus define

a graded automorphism on n by setting

(A,B) : C ⊕ R → C ⊕ R

(x, z) 7→ (Ax,Bz).

Using exponential coordinates, this extends to a map of N that we call g. We further define a

map on the hyperbolic space CH2 by setting

f : N ⋉R → N ⋉R

(n, a) 7→ (g(etαn), a).

As in the real case, up to choosing another base point in CH2 and another point ∞ ∈ ∂CH2, we

can easily see that the quasiisometry f extends to g on ∂CH2 \ {∞}, and that its differential, for

example at 1 ∈ N ∼= ∂CH2 \ {∞}, is given by Df(1) = g. However, g is clearly not a similarity,

becauseA is not an isometry of C. This counterexample can be extended to the higher-dimensional

complex hyperbolic spaces. It is also worth noting that further examples illustrating that not

every quasiconformal homeomorphism of the boundary corresponds to a similarity of N are given

by contact transformations of N , which are quasiconformal [KR85].

6.3 A geometric perspective

It is possible to view the proof of Proposition 6.2 in a more geometric way. We sketch the idea

only for the complex and the quaternionic case, aiming to illustrate the difference between them.

Our treatment can, in principle, be generalised to the boundaries of the real and the octonionic
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hyperbolic spaces, however, in the real case it is trivial and the octonionic case is less amenable

than the others, so that we omit both.

First we observe that all arguments in the proof of Proposition 6.2 for the case HHn with n ≥ 3

also apply to graded automorphisms of the boundaries of CHn up to the point where from

[Ax,Ay] = [x, y] for all x, y ∈ V 1 we derive that A is an isometry. We will therefore focus on such

maps in our analysis and give the condition [Ax,Ay] = [x, y] a geometric meaning.

Our analysis relies on lifts of curves in V 1 to horizontal curves in the Carnot group N associ-

ated with ∂KHn+1 \ {∞}. Using exponential coordinates, we can construct a curve in N from a

curve γ ∈ V 1 by inserting γ into the first dimV 1 coordinates, and we will see that requiring hori-

zontality already determines the remaining coordinates. In fact, these coordinates can be derived

from the geometry of γ. This idea is inspired by Allcock’s proof of an isoperimetric inequality

for the Heisenberg groups in which horizontal lifts of curves in V 1 play a crucial role [All98]. We

first make this precise and later explain how this relates to the proof of Proposition 6.2.

For better readability, we choose to consider ∂KHn+1 \ {∞} in this section. The highest index

appearing in elements of N = Kn ⋉ Im K is then n instead of n− 1.

We choose real parameterisations of N = Kn × Im K ∼= n. In the complex case, we set

ψ : R2n+1 → Cn × Im C

(x1, · · · , xn, y1, . . . , yn, z) 7→ ((x1 + iy1, · · · , xn + iyn), iz) ,

and in the quaternionic case we take

ψ : R4n+3 → Hn × Im H

(u1, v1, x1, y1, · · · , un, vn, xn, yn, zi, zj, zk) 7→ ((ul + ivl + jxl + kyl)n
l=1, izi + jzj + kzk) .

Recall that with the exponential coordinates (2.1), the map ψ yields a global parameterisation of

the corresponding Carnot groups N .

An inner product ge on n can be defined by declaring the basis vectors {ψ(b)}, where b runs

through the orthonormal basis vectors of Rn·dimR K+dimR Im K. We denote by X1 the basis vector

corresponding to the x1-coordinate, and extend this nomenclature analogously to the other basis

vectors. A metric on N can be defined by translating this inner product to other points p by left

multiplication gp = (Lp)∗ge.
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We identify the horizontal subspaces next. By (5.4), the horizontal subspace of TeN is given by

He = spanR{X1, · · · , Xn, Y1, · · · , Yn}

in the complex case, whereas in the quaternionic case we have

He = spanR{U1, · · · , Un, V1, · · · , Vn, X1, · · · , Xn, Y1, · · · , Yn}.

It is translated to other points p ∈ N by left-multiplication, hence Hp = deLpHe ⊆ TpN .

Definition 6.7. Let γ be a curve in V 1 ∼= Kn. By x we denote the vector consisting of the

first n · dimR K coordinates of (x, z). We define the projection π : N → Kn, exp(ψ(x, z)) 7→ x.

A horizontal lift of γ is a horizontal curve γ̃ in N that satisfies the condition π(γ̃) = γ.

For the explicit construction of horizontal lifts, we introduce a characterisation of the horizontal

subspaces as kernels of 1-forms. In the complex case, we set

ξ = ψ∗η, and η(x1,y1,··· ,xn,yn,z) = dz −
n∑

l=1
(xldyl − yldxl) ,

so that Hp = ker ξp. A curve β : I → N is horizontal if and only if β′(t) ∈ ker ξβ(t) for all t ∈ I,

where β′ denotes the derivative of β with respect to the curve parameter.

The representation of the horizontal subspaces as kernels of the 1-form ξ yields a geometric

interpretation for the z-coordinate, which we first present for the case n = 1. We use Stokes’

theorem to see that for the projection onto the first two components of the horizontal path in

coordinates σ = π(ψ−1 ◦ β), we have∫
σ
dz =

∫
σ
(xdy − ydx) =

∫
Dσ

d(xdy − ydx) = 2
∫

Dσ

dx ∧ dy = 2Area(Dσ),

where Dσ is the area in R2 which is bounded by σ and line segments from the origin to the start-

and endpoint of σ. This makes sense because the integral
∫

λ(xdy − ydx) vanishes whenever λ is

a radial line segment so that we can always add it to σ to obtain a closed loop which bounds Dσ.

For a horizontal path in coordinates, the z-coordinate therefore measures twice the area that its

projection onto R2 encloses (potentially after closing it with radial line segments).

If we consider the general case, we need to adjust this interpretation slightly. An analogous argu-

ment shows that generally, the z-coordinate is given by the sum of the areas that the projections

of γ in the (xl, yl)-planes enclose.

In the quaternion case, the horizontal subspaces can be described as the intersection of the kernels

52



6 Graded automorphisms of the boundaries at infinity

of three 1-forms, one for each of the (zi, zj, zk)-directions. We denote these ξ(i), ξ(j), ξ(k), with the

superscripts indicating the direction, and write them as a vector-valued differential form ξ, where

ξp =
(
ξ(i)

p , ξ(j)
p , ξ(k)

p

)T
. We set ξ = ψ∗η, with

η(v,w,x,y,zi,zj ,zk) =


η

(i)
(v,w,x,y,zi,zj ,zk)

η
(j)
(v,w,x,y,zi,zj ,zk)

η
(k)
(v,w,x,y,zi,zj ,zk)

 =


dzi − udv + vdu− xdy + ydx

dzj − udx+ xdu− vdy + ydv

dzk − udy + ydu− vdx+ xdv

 ,

so that the horizontal subspaces are Hp = ker ξp.

Again, a curve β : I → N is horizontal if and only if β′(t) ∈ ker ξβ(t) for all t ∈ I. By a

similar argument as for the complex case, this can be interpreted geometrically as follows. In the

case n = 1, the (zi, zj, zk)-coordinates represent the following geometric quantities.

• The zi-coordinate measures twice the sum of the areas in the (u, v)- and in the (x, y)-plane,

• The zj-coordinate measures twice the sum of the areas in the (u, x)- and in the (v, y)-plane,

• The zk-coordinate measures twice the sum of the areas in the (u, y)- and in the (v, x)-plane.

As in the complex case, this can be generalised to higher dimensions by considering sums of those

areas of projections to subspaces.

Let A ∈ GlR(V 1) satisfy [Ax,Ay] = [x, y]. Applying A−1 to an arbitrary curve γ and considering

the horizontal lift Ã−1γ yields a horizontal curve in N . We first consider the complex case

and take n = 1. In view of (6.3), the z-coordinate of Ã−1γ is identical with that of γ̃, but it

is determined by the area that γ encloses in the plane spanned by {AX,AY }. However, the

z-coordinate also represents the area that γ encloses in the plane spanned by {X, Y }, so that

we can view A as an area-preserving transformation of V 1. Analogously, for arbitrary n we

conclude that A is a transformation of V 1 ∼= R2n ∼= Cn which leaves the sum of the areas that

the projections of γ onto the (xl, yl)-planes enclose invariant. It follows that A is an element of

the symplectic group Sp(2n,R). This is clearly not the group of isometries of Cn.

In the quaternionic case with n = 1, the (zi, zj, zk)-coordinates of Ã−1γ are identical with

those of γ̃, but they are determined by sums of areas enclosed by projections of γ onto the

two-dimensional subspaces spanned by pairs of basis vectors in the four-dimensional vector

space spanR{U, V,X, Y }. By choosing curves for which one of the coordinates is constant, we

further see that not only the sums of two of these areas are preserved, but the areas in each
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two-dimensional subspace separately. Moreover, we have det(A) = 1 by assumption, thus A

also preserves volumes. Requiring to simultaneously preserve volumes and the areas in two-

dimensional subspaces spanned by pairs of basis vectors implies that A preserves the angles

between the two-dimensional subspaces, and hence the Euclidean inner product of V 1 which is

given by ⟨(u, v, x, y) , (u, v, x, y)⟩ = u2 + v2 + x2 + y2. In higher-dimensional cases, A preserves

the sums of these on the (ul, vl, xl, yl)-subspaces. We recover as our preserved quantity the inner

product (6.1), and it follows that A is an isometry of Hn.

7 Realising 1-quasiconformal homeomorphisms as extensions of isome-

tries

7.1 Outline of the proof

In this section, we prove that for every 1-quasiconformal homeomorphism there is an isometry

of the corresponding hyperbolic space that extends to the same map on the boundary. This

is our Proposition 7.4, and it is an important step in proving our main theorem because from

Lemma 5.11 we know that two quasiisometries with the same extension to the boundary differ

only by bounded amounts. By Proposition 6.2, in the case of the quaternionic hyperbolic spaces

and the octonionic hyperbolic plane, all quasiconformal homeomorphisms of the boundary are in

fact 1-quasiconformal, so that this will imply our main result.

The first step in proving Proposition 7.4 is to show that 1-quasiconformal homeomorphisms are

locally Lipschitz. This is done by investigating the amount of deformation of spheres of radius R

under f . When f is a global homeomorphism between Carnot groups, we let R tend to ∞. Doing

so shows that f is globally Lipschitz.

In particular, this implies that if the differential of f at infinity is an isometry, then f is an

isometry with respect to the Carnot-Carathéodory metric of the Carnot group associated with

the boundary of a quaternionic hyperbolic space or the octonionic hyperbolic plane.

Our proof of the fact that every 1-quasiconformal homeomorphism of ∂KHn can be realised as

the extension of an isometry of KHn makes use of this property in the following way. Given a

1-quasiconformal homeomorphism f , we can construct an isometry of KHn whose extension to

the boundary has the same differential as f at the point ∞. In order to be able to translate
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the notion of differentiability, which we have established on Carnot groups, we need to translate

between the boundary ∂KHn and the abstract group N ∼= ∂KHn \ {∞}. To do so, it is helpful

to define embeddings of N into ∂KHn \ {∞} which fix a given other point in the boundary. This

is done in Lemma 7.2.

We then prove that the map of the Carnot group N that we obtain from f is an isometry of the

Carnot-Carathéodory metric, and by Lemma 7.3, we conclude that f is a group automorphism.

The absolute continuity on lines of quasiconformal homeomorphisms allows us to conclude that

whenever the differentials at ∞ of f and the extension of an isometry coincide, then the maps

coincide as well, so that f is the extension of the isometry constructed.

7.2 All 1-quasiconformal homeomorphisms come from isometries

Recall that in Lemma 4.21 we have shown that capacities are invariant through 1-quasiconformal

homeomorphisms. We use this to prove that 1-quasiconformal homeomorphisms between open

subsets of Carnot groups are locally Lipschitz. This is done in the following lemma. For global

homeomorphisms of the boundary of the rank-one symmetric spaces, we will see that this is true

globally, which allows us to show that 1-quasiconformal homeomorphisms can be obtained as

extensions of isometries.

Lemma 7.1. Let U ⊆ N and V ⊆ N ′ be open subsets of the Carnot groups N and N ′. Let

f : U → V be a 1-quasiconformal homeomorphism. Then f is locally Lipschitz.

Proof. Let x ∈ U . Fix R < d(f(x), V ). Set

D(x) = d(x, f−1∂B(f(x), R)).

For ε < D(x), let us set r(x) = max{d(f(x), f(z)) : d(x, z) ≤ ε}, so that Lipf (x) = lim
ε→0

r(x)
ε

. The

capacitor C = f−1B(f(x), R) \ B̄(x, ε) is separated by the capacitor S = B(x,D(x)) \ B̄(x, ε),

which is a spherical capacitor. Denoting its capacity by φ as in Remark 4.17, we have

capacity C ≤ capacity S = φ

(
ε

D(x)

)
.

Its image f(C) separates the spherical capacitor S ′ = B(f(x), R) \B(f(x), r(x)), so that

capacity f(C) ≥ capacity S ′ = φ

(
r(x)
R

)
.

From Lemma 4.21 we know that capacity f(C) = capacity C, so that combining the two inequal-
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ities shows that φ
(

r(x)
R

)
≤ φ

(
ε

D(x)

)
. The function φ is nondecreasing, which implies r(x)

R
≤ ε

D(x) ,

so that

Lipf (x) = lim
ε→0

r(x)
ε

≤ R

D(x) .

Since f is quasiconformal, D(x) is nonzero, and since moreover D(x) = d(x, f−1∂B(f(x), R)) is

continuous, the local dilation is bounded. Moreover, f is uniformly Lipschitz on every line on

which it is almost everywhere uniformly continuous. We know from Proposition 4.15 that f is

absolutely continuous on almost every line. This property is stronger than uniform continuity, so

that f is locally Lipschitz.

When f is a global homeomorphism between Carnot groups, we let the radius R tend to ∞. This

lets us deduce that f is globally Lipschitz, with Lipf (x) = lim
R→∞

R
D(x) .

As a further preliminary result for the proof of Proposition 7.4 we define for every pair of

points x,∞ ∈ ∂KHn an embedding N → ∂KHn \ {∞} which maps 1 to x.

Lemma 7.2. For any two distinct points x,∞ ∈ ∂KHn, there exists a homeomorphism of Carnot

groups i∞ : N → ∂KHn \ {∞} such that i∞(1) = x.

Proof. The proof relies on the identification KHn ∼= N ⋊R as in Section 5.2, and the extensions

of isometries to the boundary, as in Section 5.3. Recall that the identification is not canonical,

but depends on the choice of a base point in the hyperbolic space, and the choice of a point in

the boundary. Our choice depends on the two points x and ∞.

Let c be a geodesic with endpoints x and ∞ so that [c−] = ∞, where by c− we denote the geodesic

that we obtain from c by multiplying the curve parameter with −1. Choose c(0) as a base point,

however, note that the choice of base point on the geodesic c is irrelevant for this construction.

We construct an embedding ı∞ of the abstract group N in Isom (KHn), so that ı∞(1) fixes the

geodesic c. We identify KHn with N ⋊ R with the base point c(0) and the point at infinity ∞,

so that N acts simply transitively on any horosphere centred at ∞ by left-multiplication. The

Riemannian metric on KHn is such that this action is by isometries. By combining this with the

trivial action on c, we obtain an isometry of KHn.

We denote the resulting homeomorphism from N to Isom (KHn) by ı∞. It is easily seen that

extensions of the isometries ı∞(n) for n ∈ N , denoted ı∞(n), fix ∞, because the isometries
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map c− to asymptotic geodesics (see for example [BH99, Lemma 10.26]). Hence, they allow us to

identify ∂KHn \ {∞} and N through

i∞(g) = ı∞(g)(x),

where i∞ is clearly bijective. Moreover, it follows that i∞(1) = x because ı∞(1) fixes c.

The next lemma is a partial result for proving that 1-quasiconformal homeomorphisms of the

boundaries are, after translating them to maps of the abstract group N , group automorphisms.

Lemma 7.3. Let f be a bijective isometry with respect to the Carnot-Carathéodory metric d∞ of

a Carnot group N that is identified with the boundary of a rank-one symmetric space, and assume

that f fixes the neutral element. Then, there is a group automorphism which coincides with f

on N⧸[N,N ] and commutes with the homotheties of N .

Proof. A line in N is a horizontal curve whose projection onto N⧸[N,N ] is a curve that realises

the distance between any two of its points. Isometries permute the lines. Let zΣ be the union of

the lines passing through z. We claim that z ∈ [N,N ] if and only if zΣ ∩ eΣ = ∅. To see that

this is true we observe that if z ∈ [N,N ] then there is no line passing through both z and the

origin, which happens if and only if z ∈ exp(V 2) = [N,N ].

Since f is an isometry, we have f(zΣ) = f(z)Σ, hence f preserves the centre. More generally, if

we let π denote the projection from N to N⧸[N,N ], then for c ∈ N⧸[N,N ] any two a, b ∈ π−1(c)

differ at most by z = a−1b, where z ∈ Z(N), which we know is preserved by f . We consider the

action of f on the set of fibres
{
π−1(c) : c ∈ N⧸[N,N ]

}
and observe that f permutes the fibres.

As f is invertible, f descends to a bijection of N⧸[N,N ] that we call f̄ .

Note that N⧸[N,N ] ∼= Kn−1 has a vector space structure. Since f is an isometry, the map f̄

preserves the Euclidean distance d(u, v) = d∞(π−1(u), π−1(v)). Thus f̄ commutes with the ho-

motheties of N⧸[N,N ], which are simply rescalings by a global factor et for some t ∈ R. We use f̄

to define an automorphism of N that we call ¯̄f , by setting

¯̄f |N⧸[N,N ]
= f̄ , ¯̄f([a, b]) = [f̄(π(a)), f̄(π(b))] for a, b ∈ N.

Per construction, ¯̄f−1 ◦ f |N⧸[N,N ]
= idN⧸[N,N ]

and ¯̄f commutes with homotheties.

With these three preliminary results, we can now prove that 1-quasiconformal homeomorphisms

can be realised as extensions of isometries of the corresponding rank-one symmetric space.
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Proposition 7.4. Let KHn be a rank-one symmetric space, let ∂KHn be its sphere at infinity,

endowed with the conformal structure defined in Section 5.2. For every 1-quasiconformal global

transformation f of ∂KHn there is an isometry of KHn which extends to f on the boundary.

Proof. We fix x,∞ ∈ ∂KHn. The group Isom (KHn) acts 2-transitively on ∂KHn, that is, for

all (x, y), (x′, y′) there exists some g ∈ N such that g.x = x′ and g.y = y′. We can thus assume

that f fixes x and ∞.

By Lemma 7.2, there exist homeomorphisms ix : N → ∂KHn \ {x} and i∞ : N → ∂KHn \ {∞}

that fix ∞ and x respectively. They allow us to identify ∂KHn \{x} and ∂KHn \{∞} with N by

ix(g) = ıx(g) · ∞, i∞(g) = ı∞(g) · x,

where both maps ix, i∞ are bijective.

Let us denote by At the translation by t along the geodesic from x to ∞. Being isometries, the

maps At extend to the boundary, and we denote their extensions to ∂KHn still by At. We have

ix ◦ etα = At ◦ ix, i∞ ◦ e−tα = At ◦ i∞. (7.1)

These embeddings allow us to translate the theory of differentiation on Carnot groups that we

developed in Section 2.3 to i∞(N) ⊆ ∂KHn, where

Df(∞) = lim
t→∞

(i∞ ◦ etα ◦ i−1
∞ ) ◦ f ◦ (i∞ ◦ e−tα ◦ i−1

∞ ) = lim
t→∞

A−t ◦ f ◦ At. (7.2)

Any potential differential β is a similarity, that is, it is an automorphism of N that commutes

with etα. By bijectivity of the exponential map, we obtain a graded automorphism of n that

we call log(β) ∈ CAut(n)(α), which satisfies β(exp(n)) = exp(log(β)(n)) for all n ∈ n. It is easy

to see that β is indeed the differential of the automorphism of the boundary i∞ ◦ β ◦ i−1
∞ . By

Proposition 6.2, we know to that this map is the extension of an isometry of KHn.

We set g = f ◦ (i∞ ◦ β ◦ i−1
∞ )−1, where i∞ ◦ β ◦ i−1

∞ = Df(∞). As β commutes with etα, we have

Dg(∞) = id∂KHn\{∞}. We can therefore, up to composing f with the extension of an isometry

of KHn, assume that Df(∞) is the identity.

To show that f itself is the extension of an isometry, we prove that i−1
∞ ◦ f ◦ i∞ is a group

automorphism of N . This, together with the absolute continuity of f on lines, implies that if

Df(∞) is the identity, then so is f . As f = i∞ ◦ β ◦ i−1
∞ , and given that we already know that
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the latter is the extension of an isometry of KHn, this concludes the proof.

To show that f is a group automorphism, we prove that f corresponds to a map on N that is an

isometry of N with respect to the Carnot-Carathéodory metric defined in Section 5.2, and observe

that f fixes the identity element of N . Using Lemma 7.3, we further show that an isometry that

fixes the identity is already a group automorphism.

We can now use i∞ to define a map f̄ on N that corresponds to f , by setting f̄ = i−1
∞ ◦ f ◦ i∞.

Note that applying i−1
∞ here is well-defined because we assumed that f fixes ∞. It follows that

etα ◦ f̄ ◦ e−tα → idN as t → ∞, (7.3)

because we assumed that the differential of f at ∞ was the identity.

Our next goal is to prove that f̄ is an isometry of N with respect to the distance d∞ that was

introduced in Section 5.2. Set R = et. When y is the neutral element of N , the number D(y)

that was introduced in Lemma 7.1 is such that

D(y)
R

= 1
R
d∞

(
y, f̄−1∂B(f̄(y), R)

)
= 1
R
d∞

(
y, f̄−1 ◦ etα∂B(f̄(y), 1)

)
= d∞

(
e−tαy, e−tα ◦ f̄−1 ◦ etα∂B(f̄(y), 1)

)
= d∞

(
y, e−tα ◦ f̄ ◦ etα∂B(f̄(y), 1)

)
,

where, in the second step, we choose t = t(R) such that etα is a similarity of ratio R, and in the

last step we used that e−tαy = y because y is the neutral element. Then (7.3) shows that the

right hand side tends to 1 when R, or equivalently t, tends to ∞. By Lemma 7.1 we have that

Lipf (y) ≤ R
D(y) , hence, for all z ∈ N ,

d∞(f̄(y), f̄(z)) ≤ d∞(y, z).

By precomposing f̄ with translations, which are isometries of N , we obtain the same inequality

for any y. Repeating this argument for f̄−1, we conclude that f̄ is an isometry of (N, d∞).

Note that f fixes x, which translates to f̄ fixing the identity. As f̄ is bijective, we can now apply

Lemma 7.3 to obtain an automorphism of N that we call ¯̄f . It commutes with the homotheties

of N per construction, hence the differential of ¯̄f−1 ◦ f̄ is easily seen to be the identity. With the

property of absolute continuity on curves, we conclude that ¯̄f−1 ◦ f̄ is itself the identity. Since ¯̄f

is a group automorphism, so is f̄ . It follows that f̄ and β coincide, and f is the extension of an

isometry of KHn.
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8 Proof of the main theorem

With the previous work it is now straightforward to prove our main result.

Theorem 8.1. Every quasiisometry of quaternionic hyperbolic space HHn, where n ≥ 2, respec-

tively of the octonionic hyperbolic plane OH2, lies a bounded distance away from an isometry.

That is, for every quasiisometry q : KHn → KHn, where KHn = HHn for n ≥ 2 or KHn = OH2,

there exists an isometry f : KHn → KHn and a map g : KHn → KHn such that q = g ◦ f , and

for some constant K, we have

d(x, g(x)) ≤ K for all x ∈ KHn.

Proof. Let f be a quasiisometry of quaternionic hyperbolic space HHn or the octonionic hy-

perbolic plane OH2. By Proposition 5.12, f extends to a quasiconformal homeomorphism of the

sphere at infinity. From Section 5.2 we know that the latter can, after removing one point, be

identified with a Carnot group. The homeomorphism f is automatically 1-quasiconformal, so by

Proposition 7.4 there exists an isometry f̃ which has the same extension to the sphere at infinity.

Finally, by Lemma 5.11, f is a bounded distance from f̃ , that is, d(f(x), f̃(x)) is bounded above,

and the bound only depends on the quasiisometry constants L and C.
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[Gro96] Gromov, M. “Carnot-Carathéodory Spaces Seen from Within”. In: Sub-Riemannian
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[Mos68] Mostow, G. “Quasi-Conformal Mappings in n-Space and the Rigidity of Hyperbolic
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