
Heidelberg University

Bachelor Thesis in Mathematics
submitted by

Paula Heim

2023



The Visual Boundaries of Hyperbolic Spaces

This bachelor thesis has been carried out by Paula Heim at the Mathematical Institute
in Heidelberg under the supervision of

Dr. Max Riestenberg
and

JProf. Dr. Maria Beatrice Pozzetti

i



The Visual Boundaries of Hyperbolic Spaces Paula Heim

Abstract. This thesis conducts an in-depth investigation into rank-one symmetric spaces and
their visual boundaries. The analysis begins by exploring the projective models of hyperbolic
spaces and the Riemannian structure of these. In this context, we examine geodesic rays and
groups that act on the hyperbolic spaces transitively and by isometries. The visual boundary
is introduced through an equivalence relation on the set of geodesic rays, and we show that it
(minus one point) can also be identified with a subgroup of the above-mentioned groups and with
any horosphere in the hyperbolic spaces. These three viewpoints each highlight different aspects
of the visual boundary and allow us to define a structure that presents the visual boundaries of
the hyperbolic spaces as subRiemannian manifolds. The final part focuses on the application of
these concepts to a specific problem on the visual boundaries of the quaternionic hyperbolic spaces.
Generalising a result by Allcock [All98], we construct homotopies from vertical line segments to
horizontal paths, where we aim to control the area of the homotopies by a function of the length
of the vertical line segments.

Abstrakt. Diese Arbeit untersucht symmetrische Räume vom Rang eins und ihre sichtbaren
Ränder. Die Analyse beginnt mit der Erkundung der projektiven Modelle hyperbolischer Räume
und ihrer Riemannschen Struktur. In diesem Zusammenhang untersuchen wir minimierende Geodä-
ten und Gruppen, die auf die hyperbolischen Räume transitiv und isometrisch wirken. Der sichtbare
Rand wird durch eine Äquivalenzrelation auf der Menge der minimierenden Geodäten eingeführt,
und wir zeigen, dass er (ohne einen Punkt) auch mit einer Untergruppe der oben genannten Grup-
pen sowie mit jeder Horosphäre im hyperbolischen Raum identifiziert werden kann. Diese drei
Perspektiven beleuchten jeweils verschiedene Aspekte des sichtbaren Rands und ermöglichen es
uns, eine Struktur zu definieren, die die sichtbaren Ränder der hyperbolischen Räume als sub-
Riemannsche Mannigfaltigkeiten darstellt. Der letzte Teil konzentriert sich auf die Anwendung
dieser Konzepte auf ein spezifisches Problem auf den sichtbaren Rändern der quaternionischen
hyperbolischen Räume. Ein Ergebnis von Allcock [All98] verallgemeinernd konstruieren wir Homo-
topien von vertikalen Geradensegmenten zu horizontalen Pfaden, wobei wir den Flächeninhalt der
Homotopien durch eine Funktion der Länge der vertikalen Geradensegmente beschränken.
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C The kernel of dôπ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

References 69

iii



The Visual Boundaries of Hyperbolic Spaces Paula Heim

1 Introduction

This thesis explores rank-one symmetric spaces and their visual boundaries. Its goal is to achieve
a description that enables to investigate their subRiemannian structure.
The non-compact irreducible rank-one symmetric spaces can be divided into three families, the

real hyperbolic spaces, the complex hyperbolic spaces and the quaternionic hyperbolic spaces, and
there is one exceptional case which is the octonionic hyperbolic plane [Bes78]. We only focus on the
real, complex and quaternionic hyperbolic spaces and denote them as the K-hyperbolic spaces KHn,
where K is either R,C or H, and n ∈ N indicates the dimension. To each K-hyperbolic space we
associate its visual boundary ∂KHn. The visual boundary can be defined for a larger class of metric
spaces and there are various reasons to study it [BH99], but in this thesis, we are interested in one
specific aspect only which is that the visual boundary of a K-hyperbolic space can be equipped with
some structure that makes it a subRiemannian manifold. We set up this structure and use it to solve
the following geometric problem on the visual boundary of the quaternionic hyperbolic space HHn,
that is inspired by a lemma by Allcock [All98, Lemma 4.3]. For subRiemannian manifolds, we can
define horizontal and, in our case, also vertical paths. The problem under consideration is to map
a vertical path of length L to a horizontal path of length

√
2πL by a homotopy with an area that

is bounded by 2L+ 8√
3π

1/2L3/2. We present a solution for special vertical paths.
This thesis is divided into three parts. The first part focuses on the K-hyperbolic spaces. These

spaces can be modelled in various ways. For our purpose, it is useful to start with the projective
model. It realises the hyperbolic spaces as the subsets of the K-projective spaces KPn for which
a quadratic form Q of signature (n, 1) is negative definite. We begin our investigation by defining
the projective model, introducing the hyperbolic spaces as metric spaces. We then show that it is
possible to obtain a Riemannian metric from the quadratic form Q, using that the K-hyperbolic
spaces can be realised as immersed submanifolds of Rm for some m ∈ N. This construction is
well-known for the real hyperbolic spaces, it yields the hyperboloid model. For the complex and
quaternionic hyperbolic spaces, there is more arbitrariness in choosing an immersion, and we present
one way to deal with this issue in the appendix. Our construction yields a model for the tangent
spaces as well as a Riemannian metric on the hyperbolic spaces, and we prove that the metric space
structure induced by the Riemannian metric coincides with the one from our initial definition.
In the course of deriving the induced metric space structure, we investigate geodesics in our

hyperbolic spaces. We further introduce geodesic rays as unit speed geodesics, define the notion of
two geodesic rays being asymptotic and answer the question under which conditions two geodesic
rays are asymptotic. Moreover, we show that this property can be used to introduce an equivalence
relation on the set of geodesic rays. This section lays important groundwork for the definition of
the visual boundary.
We then determine for each K-hyperbolic space a group OK(Q) that acts transitively and by

isometries on it. We start by identifying the group of matrices with entries in K preserving the
quadratic form Q and we derive a useful characterisation of the matrices in this group. From the
definition of the hyperbolic spaces through Q, it is easy to see that the induced action preserves
the hyperbolic spaces.
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Since this group action is transitive and by isometries, we can use the group to obtain a new
perspective on our hyperbolic spaces. Moreover, we will later prove that, after subtracting one
point, the visual boundaries of the hyperbolic spaces are identified with a subgroup N of OK(Q).
As our goal is the investigation of the structure of the visual boundary (minus one point) as a
subRiemannian manifold, we determine the root space decomposition of the Lie algebra of OK(Q),
because it later provides convenient coordinates and a simple way of introducing a distribution
which identifies horizontal curves in the subRiemannian manifold.

After this interjection, we return to investigating the group of isometries. We define subgroups N
and A, where N is the group from above, and A is such that the product NA acts simply transitively
on the hyperbolic spaces. This allows for the description of the hyperbolic spaces as semidirect
products in terms of the matrix entries that, after fixing a base point, uniquely correspond to points
in the hyperbolic spaces. We translate the Riemannian metric and the distance function into
this description and show that the trace form on the Lie algebra of OK(Q) yields essentially the
Riemannian metric on the hyperbolic spaces. This concludes the discussion of the hyperbolic spaces.

In the second part, we define the visual boundary as the set of equivalence classes of asymptotic
geodesic rays and investigate its form for the hyperbolic spaces. Thanks to our prior results,
we know that we can characterise each equivalence class of geodesic rays in the projective model
uniquely by a point at infinity to which the geodesic rays of this equivalence class converge. The
identification of the elements of the visual boundary with points at infinity allows us to show that
there is a one-to-one correspondence between the visual boundary (minus one point at infinity
which we call pt) and N . Moreover, we prove in this section that N can also be identified with
any horosphere centred at pt. This yields three objects that are identified, the visual boundary
minus {pt}, the group N and any horosphere centred at pt.

In the next section, we finally investigate the way in which the visual boundaries of the hyperbolic
spaces (minus {pt}) are subRiemannian manifolds. The identification with a horosphere yields a
metric on the visual boundary of a hyperbolic space by restricting the Riemannian metric of the
hyperbolic space to the horosphere. Each choice of horosphere yields a different metric, but these
are equivalent in the sense that choosing a different such Riemannian metric changes statements
about lengths at most by irrelevant constants. A distribution can be defined using a root space of
the Lie algebra of N . It identifies the horizontal subspaces as the subspaces of the tangent spaces
that are tangent to the distribution, while the vertical subspaces are defined as the subspaces of
the tangent spaces that are perpendicular to the horizontal subspaces.

The last part of the thesis shows an application of the previously derived concepts. From this point
on, the visual boundaries of different hyperbolic spaces are treated separately, because the vertical
subspaces have different dimensions depending on the underlying hyperbolic space. There are no
vertical subspaces for the real hyperbolic spaces, there are one-dimensional vertical subspaces for all
complex hyperbolic spaces and three-dimensional vertical subspaces for all quaternionic hyperbolic
spaces. We consider the complex case first and present a lemma by Allcock that provides a homo-
topy which takes vertical paths to horizontal paths and estimates the area of the homotopy [All98].
The result is used there to prove an isoperimetric inequality. Delving into the full context is beyond
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the scope of this thesis and we simply treat his lemma as a statement that is interesting for the
purpose of working with a subRiemannian manifold. After presenting Allcock’s lemma and his
proof, we generalise it to the quaternionic case. The difference to the complex case is that there
are now three vertical directions instead of one, which allows for many different vertical paths. We
can use the homotopy from the complex case to solve this problem for paths along a line segment
with only one nonzero coordinate, and we manipulate this solution to obtain a solution for general
line segments. Our investigation results in the following theorem.

Theorem. Any regular vertical path following a line segment in ∂HHn \ {pt} of length L is
homotopic to a horizontal path of length

√
2πL by a homotopy of area at most 2L+ 8

√
π
3L

3/2.

2 The K-hyperbolic spaces

2.1 Quaternions

Before we begin our investigation of the K-hyperbolic spaces, we review the definition and some
operations on the quaternions. The review follows Section 10.1.1 in [LD23].
The quaternions H are a four-dimensional algebra over R. We declare {1, i, j, k} as a basis that

satisfies the following multiplication rules,

ij = k = −ji, jk = i− kj, ki = j = −ik, i2 = j2 = k2 = −1, 1u = u1 = u

for all u ∈ H. A quaternion can be expressed as

a+ ib+ jc+ kd,

where a, b, c, d ∈ R. In analogy to the complex numbers, we introduce the following:

• For u = a+ ib+ jc+ kd ∈ H, we define the conjugate u := a− ib− jc− kd.

• For u ∈ H we define the absolute value |u| :=
√
uu.

• For u ∈ H we define its real part by Re u := u+u
2 . If we write u = a+ ib+ jc+ kd, then the

real part of u is Re u = a.

• For u ∈ H we define its imaginary part by Im u := u−u
2 . If we write u = a + ib + jc + kd,

then the imaginary part of u is Im u = ib+ jc+ kd.

Note that unlike for the real and the complex numbers, multiplication in H is not commutative,
and instead, for any v, w ∈ H it holds that

vw = w v.

This can easily be verified using the representation of the quaternions v, w as a linear combination
of basis elements and the respective multiplication laws. It follows that for matrices A,B, whose

3



The Visual Boundaries of Hyperbolic Spaces Paula Heim

entries are quaternions, an identity for the Hermitian transposes A∗, B∗ (which are defined in an
analogous way as for matrices with complex entries) carries over from the case of complex matrices,

(AB)∗ = B∗A∗.

We say that x, y ∈ H are linearly dependent if there exists some λ ∈ H such that xλ = y. We define
linear dependence through right-multiplication with scalars instead of left-multiplication to ensure
linearity of matrix-vector multiplication. This cannot be guaranteed if we choose left-multiplication
because for any matrix A with quaternionic entries, we have A(λx) ̸= λAx in general. However,
as multiplication in H is associative, A(xλ) = (Ax)λ holds, so that, with our definition of linear
dependence, matrix multiplication is a linear operation.

2.2 Hyperbolic spaces

2.2.1 Hyperbolic spaces as metric spaces

In this section, we introduce the K-hyperbolic spaces, where K ∈ {R,C,H}, through the projective
model, following Chapter II.10 in [BH99] and Section 10 in [LD23]. We write KHn to denote
the K-hyperbolic space of dimension dimRK · n (as a manifold). In the projective model, the
hyperbolic spaces are subsets of the projective spaces KPn for which a certain quadratic form is
negative. We first recall projective spaces and then introduce the quadratic form and discuss its
relevant properties before we define the hyperbolic space KHn. Equipped with a distance function,
the spaces KHn are metric spaces. We present this distance function as part of the definition, but
it is in fact induced by a Riemannian metric on KHn, as we show in Section 2.2.2.
We begin by recalling the definition of the projective spaces KPn.

Definition 2.1. The n-dimensional projective space over K is the quotient

KPn :=
(
Kn+1 \ {0}

)
⧸∼

where (x1, · · · , xn+1) ∼ (y1, · · · , yn+1) if and only if there exists a λ ∈ K \ {0} such that
(x1, · · · , xn+1) = (y1λ, · · · , yn+1λ). The equivalence class of x is denoted [x] and (x1, · · · , xn+1) are
homogeneous coordinates.

Note that the homogeneous coordinates are not really coordinates because many choices of homo-
geneous coordinates correspond to the same element in KPn.
We define a quadratic form which can be used to obtain the hyperbolic spaces from the projective

spaces. Rather than defining the quadratic form on KPn, we define it on Kn+1 and insert repre-
sentatives of elements in KPn, at the cost that we always have to confirm that our statements are
independent of the chosen representative. The choice of quadratic form is not unique, and in fact,
we could equivalently use any other quadratic form with signature (n, 1) for this purpose,1 but the

1See also Section B of the appendix, where we show that for any quadratic form of signature (n, 1), there exists a
basis in which it is diagonal with one eigenvalue −1 and n eigenvalues +1. Evidently, the hyperbolic spaces obtained
from any such quadratic form are related to each other by an invertible transformation.
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one defined below allows for a particularly convenient description later on.

Definition 2.2. On Kn+1 we define the quadratic form Q(x, y) := ⟨x | y⟩ by

⟨x | y⟩ :=
n∑
i=2
xiyi − x1yn+1 − xn+1y1,

where x = (x1, · · · , xn+1) and y = (y1, · · · , yn+1).

We often write Kn,1 to denote Kn+1 endowed with the quadratic form Q in order to emphasise
the additional structure on Kn+1 that goes along with Q. For simplicity, we often write elements
of Kn+1 as row vectors without explicitly transposing them.
We establish some facts about ⟨· | ·⟩.

Lemma 2.3. The following are true.

(a) For all x, y ∈ Kn,1 it holds that ⟨x | y⟩ = ⟨y |x⟩.

(b) The form ⟨· | ·⟩ is additive in both arguments, and for all x, y ∈ Kn,1 and λ ∈ K it holds that
⟨x | yλ⟩ = ⟨x | y⟩λ and ⟨xλ | y⟩ = λ⟨x | y⟩.

(c) For all x ∈ Kn,1 it holds that ⟨x |x⟩ ∈ R.

(d) For x ∈ Kn,1 define x⊥ :=
{
y ∈ Kn+1 : ⟨x | y⟩ = 0

}
. Then for all x ∈ Kn,1 with ⟨x |x⟩ < 0,

the restriction of ⟨· | ·⟩ to x⊥ is positive definite.

Proof. The statements (a) and (b) immediately follow from the definition of the quadratic form.
The property (c) is a direct consequence of (a) because it implies that ⟨x |x⟩ = ⟨x |x⟩. Finally, the
proof of (d) is given in the appendix, see Proposition B.2.

We are now ready to introduce the hyperbolic spaces through the projective model.

Definition 2.4. The K-hyperbolic n-space is defined as the set

KHn := {[x] ∈ KPn : ⟨x |x⟩ < 0} .

Equipped with the distance function defined by

cosh2 d([x], [y]) = ⟨x | y⟩⟨y |x⟩
⟨x |x⟩⟨y | y⟩

, (2.1)

the K-hyperbolic n-space KHn is a metric space.

It is easy to see that the condition ⟨x |x⟩ < 0 in the definition of KHn does not depend on the
chosen representative. If x, y ∈ Kn,1 \ {0} such that [x] = [y], then there exists a λ ∈ K \ {0} such
that x = yλ. We calculate

⟨x |x⟩ = ⟨yλ | yλ⟩ = λ⟨y | y⟩λ = |λ|2 ⟨y | y⟩.

5
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The last equality holds because ⟨y | y⟩ is real. With λ ̸= 0 it follows that ⟨x |x⟩ < 0 if and only
if ⟨y | y⟩ < 0.
Moreover, we prove that the distance function is well-defined and independent of the chosen

representatives. This requires the following lemma.

Lemma 2.5. (The Reverse Schwartz Inequality). If ⟨x |x⟩ < 0 and ⟨y | y⟩ < 0, then

⟨x | y⟩⟨y |x⟩ ≥ ⟨x |x⟩⟨y | y⟩.

Equality holds if and only if x and y are linearly dependent over K.

Proof. If y = xλ for some λ ∈ K, then it is easy to see the equality

⟨x | y⟩⟨y |x⟩ = ⟨x |λx⟩⟨λx |x⟩ = ⟨x |x⟩λλ⟨x |x⟩ = |λ|2 ⟨x |x⟩⟨x |x⟩ = ⟨x |x⟩⟨λx |λx⟩ = ⟨x |x⟩⟨y | y⟩,

because ⟨x |x⟩ ∈ R.
If x and y are not linearly dependent, then y can be written as the sum of two vectors y = v + u

where v ∈ x⊥ and v ̸= 0, and u ∈ {xα : α ∈ K}. From Lemma 2.3 (d) we know that the restriction
of ⟨· | ·⟩ to x⊥ is positive definite, thus we have u = xα with α ̸= 0, because otherwise, it would not
be possible to have ⟨y | y⟩ < 0. It follows that ⟨x | y⟩ = ⟨x |x⟩α ̸= 0. We choose λ = − ⟨x|x⟩

⟨x|y⟩ , then
⟨x+ yλ |x⟩ = 0, which implies that x+ yλ ∈ x⊥. The restriction of ⟨· | ·⟩ to x⊥ is positive definite,
and because x and y are linearly independent, we have x + yλ ̸= 0, so that ⟨x + yλ |x + yλ⟩ > 0
follows. Writing out the last inequality and inserting λ = − ⟨x|x⟩

⟨x|y⟩ yields

−⟨x | y⟩⟨x |x⟩
⟨x | y⟩

+ ⟨y | y⟩ ⟨x |x⟩2

⟨x | y⟩⟨y |x⟩
> 0.

Given that ⟨x |x⟩ < 0, dividing the inequality by ⟨x |x⟩ reverses the inequality sign, so that we can
rearrange it to

⟨x | y⟩⟨y |x⟩ > ⟨x |x⟩⟨y | y⟩.

It immediately follows from Lemma 2.5 together with statements (a) and (b) from Lemma 2.3 that
the distance function (2.1) is well-defined and symmetric. Moreover, the facts that cosh(0) = 1 and
cosh(x) > 1 for all x ∈ R \ {0} imply the positivity of d. It is not equally obvious that d satisfies a
triangle inequality, and we refer to [BH99, Corollary II.10.9] for a proof.

2.2.2 Hyperbolic spaces as Riemannian manifolds

We defined KHn as a metric space by equipping it with the distance function d given by (2.1),
but we can show that d is in fact induced by a Riemannian metric on KHn. In the following, we
aim to understand KHn as a Riemannian manifold as there are many advantages to adopting this
perspective. For example, it enables us to view the hyperbolic spaces KHn as symmetric spaces and
use their powerful tools. We begin our discussion by introducing a model for the tangent spaces that

6
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allows us to describe tangent vectors as elements of Kn+1, which is useful for explicit calculations.
After defining the Riemannian metric, we investigate geodesics in KHn and use them to prove
that the distance function from our definition (2.1) coincides with the distance function induced
by the Riemannian metric. A thorough understanding of the geodesics will also be important for
the discussion of the visual boundaries.
Before we introduce the models of the tangent spaces, we point out that there is no canonical way to

lift KHn into Kn,1, thus there is no obvious concrete description of the tangent vectors as elements
of Kn+1. However, it is possible to do so in a non-canonical way, and this is presented in Section A
of the appendix. In this section, we construct models for the tangent spaces identifying T[x]KHn

with x⊥. Each representative of [x] yields a different model, but we also show in the appendix
that these models are equivalent in the sense that they allow the definition of a Riemannian metric
which, when applying the substitution of representatives of the tangent vectors below, is invariant
under changing the model. Following Chapter II.10 in [BH99], we present our result as a definition
and refer the interested reader to the appendix for a derivation.

Definition 2.6. For [x] ∈ KHn, we can identify the tangent space T[x]KHn with the following set,

x⊥ =
{
y ∈ Kn+1 : ⟨x | y⟩ = 0

}
,

using the differential of the canonical projection π : Kn+1 \ {0} → KPn.
If u ∈ x⊥ is identified with U ∈ T[x]KHn, then u is the tangent vector at x representing U . For
λ ∈ K \ {0}, if u is the tangent vector at x representing U , then uλ is the tangent vector at xλ
representing U .

Lemma 2.3(d) shows that the quadratic form Q is positive definite on x⊥ for all [x] ∈ KHn. Using
the identification of x⊥ with the tangent spaces of KHn, this allows us to define a Riemannian
metric on KHn, thus turning KHn into a Riemannian manifold. We will later see that the induced
distance function is the same as the distance function (2.1).

Definition 2.7. For [x] ∈ KHn and u, v ∈ x⊥ representing tangent vectors U, V ∈ T[x]KHn, we set

g[x](U, V ) = −Re ⟨u | v⟩
⟨x |x⟩

. (2.2)

Lemma 2.8 shows that g[x] is well-defined, independent of the chosen representative x of [x] and
that it yields a scalar product on T[x]KHn. We thus obtain a Riemannian metric g on KHn so
that (KHn, g) becomes a Riemannian manifold.

Lemma 2.8. For [x] ∈ KHn and u, v ∈ x⊥, the map

(u, v) 7→ −Re ⟨u | v⟩
⟨x |x⟩

7
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is a symmetric positive definite R-bilinear form. Moreover, for all λ ∈ K \ {0}, it holds that

Re ⟨uλ | vλ⟩
⟨xλ |xλ⟩

= Re ⟨u | v⟩
⟨x |x⟩

.

Proof. The R-bilinearity and the symmetry of the map are obvious. From Lemma 2.3(d), positive
definiteness follows. The equation can immediately be derived from the definition of ⟨· | ·⟩.

Note that if we choose some x ∈ KHn with ⟨x |x⟩ = −1, then the metric (2.2) is simply the real
part of the restriction of ⟨· | ·⟩ to x⊥.
We finish the introduction of the hyperbolic spaces by showing that the induced distance function

coincides with the distance function defined in (2.1). We prove this claim by constructing an arc
length-parameterised geodesic from [x] to [y] for each pair of points [x], [y] ∈ KHn. The distance of
these points in terms of the induced distance function equals the difference of the curve parameter
at the points. To do so, we first establish an expression for the geodesics in KHn.

Lemma 2.9. The geodesics γ : R → KHn are precisely the curves given by

γ(t) =
[
x cosh

(√
⟨u |u⟩t

)
+ u√

⟨u |u⟩
sinh

(√
⟨u |u⟩t

)]
,

where [x] ∈ KHn and u ∈ x⊥, up to replacing t by αt+ t0 for α, t0 ∈ R.

Proof. Let [x] ∈ KHn be represented by x ∈ Kn,1 and U ∈ T[x]KHn be represented by u ∈ x⊥. We
may take ⟨x |x⟩ = −1, otherwise we replace x by x√

|⟨x|x⟩|
, but then is necessary to also replace u

by u√
|⟨x|x⟩|

so that it represents the same tangent vector U at x√
|⟨x|x⟩|

as u represented at x. Note

that this replacement changes the argument of cosh and sinh by a factor of 1√
|⟨x|x⟩|

, but such a
reparameterisation does not alter the fact that the curve defined below is a geodesic, as we will
explain shortly. We claim that for

σ(t) = x cosh
(√

⟨u |u⟩t
)

+ u√
⟨u |u⟩

sinh
(√

⟨u |u⟩t
)
, (2.3)

the curve γ : t 7→= [σ(t)] is a geodesic. To prove the claim, we first confirm that γ is a well-defined
curve in KHn. This follows from

⟨σ(t) |σ(t)⟩ = ⟨x |x⟩ cosh2
(√

⟨u |u⟩t
)

+ ⟨u |u⟩
⟨u |u⟩

sinh2
(√

⟨u |u⟩t
)

= sinh2
(√

⟨u |u⟩t
)

− cosh2
(√

⟨u |u⟩t
)

= −1.

It remains to verify that the curve is a geodesic. Identifying Kn+1 with RdimR K(n+1), the Levi-Civita
connection ∇ in this model is, by Proposition A.1 of the appendix, given by

∇ = projTKHnD,
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where D denotes the standard connection on Kn+1 (defined by the identification with RdimR K(n+1))
and projTKHn denotes the projection onto a model of the tangent bundle.2 Using that γ(t) = [σ(t)],
we model the tangent spaces Tγ(t)KHn by σ(t)⊥ for all t. We have

Dσ̇σ̇ = d2

dt2
σ(t) = ⟨u |u⟩

(
x cosh

(√
⟨u |u⟩t

)
+ u√

⟨u |u⟩
sinh

(√
⟨u |u⟩t

))
= ⟨u |u⟩σ(t),

which implies that

∇γ̇ γ̇ = projσ(t)⊥ (Dσ̇σ̇) = projσ(t)⊥(⟨u |u⟩σ(t)) = 0,

and we conclude that γ is a geodesic.
We further prove that the geodesics cannot be of any other form. Let γ be a geodesic, set

[x] = γ(0) and choose a representative x with ⟨x |x⟩ = −1. Moreover, we set U = γ̇(0) which is
represented by u ∈ x⊥. Per assumption, it is ⟨x |u⟩ = 0. By the previous computation, the curve
σ(t) = x cosh

(√
⟨u |u⟩t

)
+ u

⟨u|u⟩ sinh
(√

⟨u |u⟩t
)

defines a geodesic γ̃ in KHn by γ̃ : t 7→ [σ(t)]. It
holds that γ̃(0) = [x] and ˙̃γ(0) = U , and since the geodesic γ is completely determined by its initial
point γ(0) and tangent vector γ̇(0), up to rescaling the curve parameter and replacing x and u

by xλ and uλ respectively for some λ ∈ K \ {0}, the curves γ and γ̃ describe the same geodesic.
We specify what is a suitable rescaling of the curve parameter in this context. We claim that the

replacement of t by αt + t0 for constants α, t0 ∈ R also yields a geodesic. To prove this claim, we
write σ′(t) = c(αt+ t0) and γ′(t) = [σ′(t)], and we see that

∇γ̇′ γ̇′ = projTKHn

(
Dσ̇′ σ̇′) = projσ′(t)⊥

(
⟨u |u⟩σ′(t)

)
= projσ(αt+t0)⊥

(
α2⟨u |u⟩σ(αt+ t0)

)
= 0.

Therefore, γ′ is also a geodesic. A straightforward computation shows that the rescaled curve

σ′(t) = x′ cosh
(√

⟨u′ |u′⟩(αt+ t0)
)

+ u′√
⟨u′ |u′⟩

sinh
(√

⟨u′ |u′⟩(αt+ t0)
)

can also be represented in the form (2.3) by setting

x = x′ cosh
(√

⟨u′ |u′⟩t0
)

+ u′√
⟨u′ |u′⟩

sinh
(√

⟨u′ |u′⟩t0
)

and

u = α

(
x′ sinh

(√
⟨u′ |u′⟩t0

)
+ u′√

⟨u′ |u′⟩
cosh

(√
⟨u′ |u′⟩t0

))
,

so that it is justified to assume that all geodesics are of the form (2.3).

Equipped with an explicit expression for the geodesics in KHn, we can determine the distance
function d on the Riemannian manifold (KHn, g). The nomenclature for the induced distance

2More precisely, an isometric immersion τ is used to model TKHn as a subset of TKn+1, and projTKHn projects
onto the tangent bundle of the immersed submanifold τ(KHn). The details are discussed in Section A of the appendix.
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function is deliberately aligned with the one from the definition of KHn as a metric space because,
as the next lemma shows, the two distance functions are identical.

Lemma 2.10. The distance function d on KHn induced by the Riemannian metric (2.2) is given by

cosh2 d([x], [y]) = ⟨x | y⟩⟨y |x⟩
⟨x |x⟩⟨y | y⟩

.

Proof. We prove the lemma by identifying for each pair of points [x], [y] ∈ KHn a geodesic from [x]
to [y] that is parameterised by arc length. The arc length of the geodesic line segment from [x]
to [y] then yields the distance of the two points.
We may assume that ⟨x |x⟩ = −1, else we replace x by x√

|⟨x|x⟩|
and u by u√

|⟨x|x⟩|
. We know from

Lemma 2.9 that the geodesics in KHn with γ(0) = [x] are of the form

γ(t) =
[
x cosh

(√
⟨u |u⟩t

)
+ u√

⟨u |u⟩
sinh

(√
⟨u |u⟩t

)]
for some u ∈ x⊥.

To obtain a geodesic that meets both [x] and [y], we need to choose u appropriately. We may
also assume that ⟨y | y⟩ = −1. We claim that there exists a unique λ ∈ K such that |λ| = 1 and
⟨x | yλ⟩ is real and negative. This can be seen by a simple calculation. Let α ∈ R and α < 0. From
Lemma 2.5 we know that |⟨x | y⟩|2 ≥ ⟨x |x⟩⟨y | y⟩ = 1. This implies ⟨x | y⟩ ≠ 0 so that we can set

λ̃ = α

⟨x | y⟩
and λ = λ̃

˜|λ|
.

It is clear that |λ| = 1 and we have

⟨x | yλ⟩ = ⟨x | y⟩ α

⟨x | y⟩ ˜|λ|
= |⟨x | y⟩| α

|α|
= − |⟨x | y⟩| ,

which is real and negative by choice of α.
We can use λ to construct the geodesic joining [x] and [y]. We set

a = arcosh (−⟨x | yλ⟩) and u = yλ− x cosh a
sinh a .

Note that a is well-defined because Lemma 2.5 implies that |⟨x | yλ⟩|2 ≥ ⟨x |x⟩⟨y | y⟩ |λ|2 = 1.
Further, we calculate

⟨u |u⟩ = 1
sinh2 a

(
⟨yλ | yλ⟩ + ⟨x |x⟩ cosh2 a− 2Re (⟨x | yλ⟩) cosh a

)
= 1

sinh2 a

(
−1 − cosh2 a− 2⟨x | yλ⟩ cosh a

)
= 1

sinh2 a

(
−1 − ⟨x | yλ⟩2 + 2⟨x | yλ⟩2

)
= 1

sinh2 a

(
−1 + cosh2 a

)
= 1,

10
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where we used that ⟨x | yλ⟩ is real, and

⟨x |u⟩ = 1
sinh a (⟨x | yλ⟩ − ⟨x |x⟩ cosh a) = 1

sinh a (⟨x | yλ⟩ − ⟨x | yλ⟩) = 0.

Let σ(t) = x cosh t+u sinh t. We define the curve γ : t 7→ [σ(t)], which, by Lemma 2.9, is a geodesic.
Moreover, it is parameterised by arc length because

gγ(t)(γ̇(t), γ̇(t)) = ⟨σ̇(t) | σ̇(t)⟩ = ⟨x |x⟩ sinh2 t+ ⟨u |u⟩ cosh2 t = 1 for all t ∈ R,

where we used that ⟨σ(t) |σ(t)⟩ = −1 for all t ∈ R. It remains to show that the curve meets both [x]
and [y]. This is easy to see because

γ(0) = [x] and γ(a) =
[
x cosh a+ yλ− x cosh a

sinh a sinh a
]

= [yλ] = [y].

We conclude that the distance of [x] and [y] is given by the arc length of the geodesic line segment
γ([0, a]), that is,

d([x], [y]) = Length(γ([0, a])) = |a− 0| = arcosh (|⟨x | y⟩|) .

Using |⟨x | y⟩| =
√

⟨x | y⟩⟨y |x⟩, this can equivalently be written as

cosh2 d([x], [y]) = cosh2 Length(γ([0, a])) = ⟨x | y⟩⟨y |x⟩.

For x, y ∈ Kn,1 with ⟨x |x⟩ and ⟨y | y⟩ not necessarily equal to −1, we replace x by x̃ = x√
|⟨x|x⟩|

(and likewise y) to be able to apply the above construction to x̃ and ỹ. Using the linearity of ⟨· | ·⟩,
it follows that the distance of [x] and [y] in terms of x and y is given by

cosh2 d([x], [y]) = ⟨x | y⟩⟨y |x⟩
⟨x |x⟩⟨y | y⟩

.

2.3 Asymptotic geodesic rays

After the discussion of the geodesics in KHn, this is a good point to introduce geodesic rays and
asymptotic geodesic rays. They will be relevant later for defining the visual boundary.

Definition 2.11. A geodesic ray c : [0,∞) → KHn is a curve that satisfies

d(c(t), c(t′)) =
∣∣t− t′

∣∣ for all t, t′ ∈ [0,∞).

We say that c is the geodesic ray issuing from [x] for some [x] ∈ KHn if c(0) = [x].
Two geodesic rays c, c′ : [0,∞) → X are asymptotic if there exists a constant C0 such that

d(c(t), c′(t)) ≤ C0 for all t ≥ 0.

We also say that c′ is asymptotic to c if c and c′ are asymptotic.

11
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Up to reparametrisation, every geodesic is a geodesic ray, and every geodesic ray is obviously a
unit speed geodesic. For us, the notions of a unit speed geodesic and a geodesic ray are therefore
identical and we will sometimes add the attribute unit speed when speaking of a geodesic ray to
emphasise the non-arbitrariness of its parameterisation. With this terminology, we can introduce
an equivalence relation on the set of geodesic rays.

Lemma 2.12. The relation on the set of geodesic rays that is defined by

c ∼ c′ :⇔ c, c′ are asymptotic

is an equivalence relation.

Proof. We only need to prove transitivity because reflexivity and symmetry are clear. Let therefore
c, c′, c′′ be geodesic rays and assume that c and c′ as well as c′ and c′′ are pairwise asymptotic, and
that their distances are bounded by constants C1 and C2 respectively. The triangle equality implies

d(c(t), c′′(t)) ≤ d(c(t), c′(t)) + d(c′(t), c′′(t)) ≤ C1 + C2.

Hence, c and c′′ are asymptotic and the relation defined in the statement of the lemma is an
equivalence relation.

We state the following lemma, which is a direct consequence of Proposition II.2.2 in [BH99],
without proof.

Lemma 2.13. Let c, c′ : [0,∞) → KHn be two geodesic rays. Then the function

t 7→ d(c(t), c′(t))

is convex.

The next lemma gives a characterisation of asymptotic geodesic rays.

Lemma 2.14. Two geodesic rays c, c′ : [0,∞) → KHn given by

c(t) =
[
x cosh

(√
⟨u |u⟩t

)
+ u√

⟨u |u⟩
sinh

(√
⟨u |u⟩t

)]
,

c′(t) =
[
y cosh

(√
⟨v | v⟩t

)
+ v√

⟨v | v⟩
sinh

(√
⟨v | v⟩t

)]
,

where [x], [y] ∈ KHn and u, v ∈ x⊥, y⊥ respectively, are asymptotic if and only if[
x+ u√

⟨u |u⟩

]
=
[
y + v√

⟨v | v⟩

]
. (2.4)

Moreover, given a geodesic ray c, then for each [y] ∈ KHn there is a unique geodesic ray issuing
from [y] that is asymptotic to c.

12
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Proof. First we assume that (2.4) holds. We may take x, y ∈ KHn such that ⟨x |x⟩ = ⟨y | y⟩ = −1.
Since geodesic rays are unit-speed parameterised, it must be ⟨u |u⟩ = ⟨v | v⟩ = 1. Therefore, we
have x+ u = (y + v)λ for some λ ∈ K with |λ| = 1.
An explicit calculation shows that

cosh2 d(c(t), c′(t)) = |⟨x cosh(t) + u sinh t | y cosh(t) + v sinh t⟩|2

=
∣∣∣cosh2 t⟨x | y⟩ + cosh t sinh t (⟨x | v⟩ + ⟨u | y⟩) + sinh2 t⟨u | v⟩

∣∣∣2 .
After inserting v = (x+ u)λ−1 − y, the expression inside the absolute value becomes

cosh2 t⟨x | y⟩ + cosh t sinh t (⟨x | v⟩ + ⟨u | y⟩) + sinh2 t⟨u | v⟩

= cosh2 t⟨x | y⟩ + cosh t sinh t
(
⟨x |x⟩λ−1 + ⟨x |u⟩λ−1 − ⟨x | y⟩ + ⟨u | y⟩

)
+ sinh2 t

(
⟨u |x⟩λ−1 + ⟨u |u⟩λ−1 − ⟨u | y⟩

)
= ⟨x | y⟩(cosh2 t− cosh t sinh t) + ⟨u | y⟩(cosh t sinh t− sinh2 t) + (− cosh t sinh t+ sinh2 t)λ−1.

For the distance, we conclude that

cosh2 d(c(t), c′(t))

=
∣∣∣⟨x | y⟩(cosh2 t− cosh t sinh t) + ⟨u | y⟩(cosh t sinh t− sinh2 t) + (− cosh t sinh t+ sinh2 t)λ−1

∣∣∣2
= |⟨x | y⟩|2 (cosh2 t− cosh t sinh t)2 +

∣∣∣⟨u | y⟩ + λ−1
∣∣∣2 (cosh t sinh t− sinh2 t)2

+ (cosh t sinh t− sinh2 t)(cosh2 t− cosh t sinh t)
(
2Re ⟨x | y⟩⟨u | y⟩ + 2Re ⟨x | y⟩λ−1

)
.

The terms ⟨u | y⟩ can be written in a simpler way, using u = (v + y)λ − x and ⟨y | v⟩ = 0, so
that ⟨u | y⟩ = −λ̄− ⟨x | y⟩, where λ̄ = λ−1 because |λ| = 1. Thus, we have

cosh2 d(c(t), c′(t))

= |⟨x | y⟩|2 (cosh2 t− cosh t sinh t)2 +
∣∣∣−λ−1 − ⟨x | y⟩ + λ−1

∣∣∣2 (cosh t sinh t− sinh2 t)2

+ (cosh t sinh t− sinh2 t)(cosh2 t− cosh t sinh t)
(
2Re ⟨x | y⟩(−λ−1 − ⟨x | y⟩) + 2Re ⟨x | y⟩λ−1

)
= |⟨x | y⟩|2

(
(cosh2 t− cosh t sinh t)2 + (cosh t sinh t− sinh2 t)2

+ 2(cosh t sinh t− sinh2 t)(cosh2 t− cosh t sinh t)
)

= |⟨x | y⟩|2
(
(cosh2 t− cosh t sinh t) + (cosh t sinh t− sinh2 t)

)2

= |⟨x | y⟩|2
(
cosh2 t− sinh2 t

)2

= |⟨x | y⟩|2 .

Hence d(c(t), c′(t)) is clearly bounded for all t, and we conclude that c and c′ are asymptotic.
Now suppose that c and c′ (defined as in the lemma) are asymptotic. We show that c′ is the unique

geodesic ray issuing from [y] that is asymptotic to c. Suppose there is another geodesic ray c′′ issuing

13
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from [y] that is asymptotic to c. Then, by the transitive property of being asymptotic, c′ and c′′

are asymptotic, that is,

d(c′(t), c′′(t)) ≤ C0

for some constant C0. But then, since d(c′(0), c′′(0)) = 0 and the distance function is never negative,
Lemma 2.13 implies that

d(c′(t), c′′(t)) = 0 for all t ≥ 0,

because a convex function that is bounded both above and below can only be constant. It follows
that c′ = c′′ and therefore, the geodesic ray that issues from [y] and is asymptotic to c is unique.

2.4 Isometry group

Since the spaces KHn are symmetric spaces, we can describe them with a group that acts on KHn

transitively and by isometries, and we present this in Section 2.6. This section is devoted to
discussing a suitable such group, which will be the group of invertible matrices preserving the
quadratic form Q, referred to as OK(Q). In the following, we define this group and show that the
action of this group on KHn is well-defined and by isometries. We point out that this group is not
the isometry group, but this is irrelevant and for the purposes of this thesis it is more convenient
to work with a matrix group instead of the proper isometry group.
Following Section 10.4 in [LD23], we begin by defining the set of invertible matrices with entries

in K and its subset OK(Q). Let Mat(n+ 1, n+ 1;K) be the set of (n+ 1) × (n+ 1)-matrices with
entries in K and denote by GLK(n+ 1) the subgroup of invertible matrices. The group GLK(n+ 1)
acts naturally on Kn,1 by K-linear automorphisms through matrix multiplication, where for A =
(aij)ni,j=1 and (x1, · · · , xn+1) ∈ Kn,1, we have

A.x =

n+1∑
j=1

a1,jxj , · · · ,
n+1∑
j=1

an+1,jxj

 .
Definition 2.15. We define the following subset of GLK(n+ 1):

OK(Q) :=
{
A ∈ GLK(n+ 1): ⟨A.x |A.y⟩ = ⟨x | y⟩ for all x, y ∈ Kn,1

}
,

that is, OK(Q) contains the invertible matrices preserving the quadratic form Q.

In the following, we present a sequence of propositions to establish the relevant properties of the
group OK(Q). To state the first proposition that provides a characterisation of OK(Q), we introduce
an alternative way of writing Q as a matrix-vector product. To this end, let

K :=


0 0 −1
0 In−1 0

−1 0 0

 ∈ Mat(n+ 1, n+ 1;K),

14
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where In−1 is the (n− 1) × (n− 1)-unit matrix. Then for any x, y ∈ Kn,1, we can write

⟨x | y⟩ = x∗Ky,

where x∗ denotes the Hermitian conjugate of x.

Proposition 2.16. A matrix A ∈ GLK(n + 1) is an element of OK(Q) if and only if A satisfies
A∗KA = K.

Proof. First we assume that A ∈ OK(Q). Then for all x, y ∈ Kn,1 it holds that x∗A∗KAy =
x∗Ky. By choosing all possible combinations of the canonical basis vectors for x, y, we conclude
that A∗KA = K.
Now suppose that A satisfies A∗KA = K. Then ⟨Ax |Ay⟩ = x∗A∗KAy = x∗Ky = ⟨x | y⟩, and it

follows that A ∈ OK(Q).

Proposition 2.17. The set OK(Q) is a subgroup of GLK(n+ 1).

Proof. Clearly In+1 ∈ OK(Q), so OK(Q) is nonempty. Proposition 2.16 provides a simple way to
prove that OK(Q) is closed under inversion and multiplication. Let therefore A,B ∈ OK(Q). Then

(AB−1)∗KAB−1 = (B−1)∗A∗KAB−1 = (B−1)∗KB−1 = (B−1)∗B∗KBB−1 = K,

which shows that AB−1 ∈ OK(Q).

Proposition 2.18. The induced action of GLK(n+1) on KPn given by A.[x] = [Ax] is well-defined.

Proof. Let λ ∈ K\{0} and x ∈ Kn+1. We need to show that induced action of GLK(n+1) on KPn

is independent of the chosen representative, that is, A.[x] = A.[xλ]. This, however, is a direct
consequence of the linearity of matrix multiplication, which implies that

(A(xλ))i =
n+1∑
j=1

Aij(xjλ) =

n+1∑
j=1

Aijxj

λ = (Ax)iλ for all i = 1, · · · , n+ 1.

Proposition 2.19. The induced action of OK(Q) on KPn preserves the set KHn.

Proof. Let x ∈ Kn,1 such that [x] ∈ KHn. Then ⟨Ax |Ax⟩ = ⟨x |x⟩ < 0, because A preserves ⟨· | ·⟩.
This implies A.[x] ∈ KHn.

Proposition 2.20. The action of OK(Q) on KHn is by isometries.

Proof. This follows immediately from the definition of the distance function (2.1) through ⟨· | ·⟩.

We emphasise that elements of the isometry group of KHn do not uniquely correspond to matrices
from OK(Q), because two matrices A,B ∈ OK(Q) that are related by scalar multiples, A = Bλ for
some λ ∈ K \ {0} (for K = R and K = C), yield the same map on KHn. Due to the non-commuta-
tivity of multiplication in the quaternions, matrices that are related by nonzero real scalar multiples
describe the same map on HHn, but this is no longer true for quaternionic scalars in general.
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Taking into account that matrices in OK(Q) satisfy the condition of Proposition 2.16, we conclude
that two different matrices in OR(Q) describe the same isometry if and only if one of them is a
multiple of the other by a factor of −1, and the same holds true for matrices in OH(Q), whereas in
the complex case, any two matrices in OC(Q) that are multiples by a unit complex number describe
the same isometry. This is why OK(Q) is not the isometry group.

2.5 Root space decomposition

In this section we determine the Lie algebra of OK(Q) and its restricted root space decomposition.
We will see that there are only four restricted roots in the complex and the quaternionic cases, and
only two in the real case. In Section 3, we prove that a suitably chosen subgroup of OK(Q) can be
identified with the visual boundary of the spaces KHn (minus one point), and that the exponential
map provides a diffeomorphism between the direct sum of two root spaces and this subgroup. This
allows us to choose coordinates for the visual boundary (minus one point) using a basis of the root
spaces by identifying each element with its preimage under the exponential map. Determining the
restricted root spaces is therefore an important step in deriving convenient coordinates.
In order to establish the language and notation used here, we review some concepts for describing

symmetric spaces. Recall that if G is a connected group acting on KHn transitively and by
isometries, p ∈ KHn and σ : G → G is an involutive automorphism with (Gσ)◦ ⊆ StabG(p) ⊆ Gσ,
where Gσ = Fix(σ) = {g ∈ G : σ(g) = g} and Ad(StabG(p)) < GL(g) is compact, then we have
KHn ∼= G⧸StabG(p) isometrically. In Lie algebra terms, for g = Lie(G) and k = Lie(StabG(p)) and
dσ = Θ, the Cartan involution corresponding to p, the tuple (g,Θ) is an orthogonal symmetric Lie
algebra. In particular, it is g = k ⊕ p, where k = E1(Θ) and p = E−1(Θ) are the (±1)-eigenspaces
of Θ, and we have p∼=TpKHn [Hel78].
From Proposition 2.20 we know that OK(Q) acts on KHn by isometries and in Proposition 2.28

we will see that this action is transitive, so that we can set G = OK(Q)◦, which denotes the
connected component of OK(Q) containing the identity, here. Note that for K = C and K = H,
the groups OK(Q) are precisely U(n, 1) respectively Sp(n, 1). These are already connected, so that
we have G = U(n, 1) and G = Sp(n, 1). For K = R, it holds that OR(Q) = O(n, 1) which has four
connected components, so that we have G = O(n, 1)◦, which is a proper subset of OK(Q), in the
real case [Kna96].
We start by determining the Lie algebra g of G. From Proposition 2.16 we know that A ∈ OK(Q)

if and only if A∗KA = K, where

K =


−1

In−1

−1

 .
Differentiation of the condition A∗KA = K yields a characterisation of g,

g = {A ∈ Mat(n+ 1, n+ 1;K) : A∗K +KA = 0} .
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Considering the structure of K, it is natural to divide A ∈ g into a block matrix as follows

A =


ψ b γ

d E f

σ h τ

 ,
where E ∈ Mat(n− 1, n− 1;K), the elements bT, d, f, hT are in Kn−1 and ψ, γ, σ, τ ∈ K. We derive
the criteria on the entries of A under which the condition A∗K+KA = 0 is satisfied. We find that

A =


ψ b γ

d E f

σ h τ

 ∈ g if and only if


ψ + τ∗ = 0, b∗ + f = 0,

γ + γ∗ = 0, d∗ + h = 0,

σ + σ∗ = 0, E∗ + E = 0.

We conclude that g is of the form

g =



ψ b γ

d E b∗

σ d∗ −ψ∗

 : ψ ∈ K, γ, σ ∈ Im K, E = −E∗, bT, d ∈ Kn−1

 ,
where we set Im R = {0}. We choose the Cartan involution

Θ: g → g, X 7→ −X∗.

Then the Cartan decomposition g = k ⊕ p consists of

k =



ψ b γ

−b∗ E b∗

γ −b ψ

 : ψ ∈ Im K, E∗ = −E, bT ∈ Kn−1, γ ∈ Im K

 ,
and

p =



ψ b γ

b∗ 0 b∗

−γ b −ψ

 : ψ ∈ R, bT ∈ Kn−1, γ ∈ Im K

 .
We claim that the Cartan involution Θ corresponds to the point o = [(1, 0, · · · , 0, 1)]. To see that

this is true, we choose ψ ∈ Im K, bT ∈ Kn−1, E ∈ Mat(n − 1, n − 1;K) such that E∗ = −E and
γ ∈ Im K, and compute


ψ b γ

−b∗ E b∗

γ −b ψ





1
0
...
0
1


=



ψ + γ

0
...
0

ψ + γ


,

17
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from which we conclude that

exp


ψ b γ

−b∗ E b∗

γ −b ψ





1
0
...
0
1


=



eψ+γ

0
...
0

eψ+γ


.

It follows that exp(k) stabilises [(1, 0, · · · , 0, 1)].

To determine the root space decomposition, a maximal abelian subalgebra a is needed. We claim
that we can take

a = spanR {a} , where a =


1 0 0
0 0 0
0 0 −1

 ,
and we will later see that a is maximal. The ansatz ada(X) = α(a)X yields the restricted roots

Λ = {−2α,−α, α, 2α} ,

where α ∈ a∗, the dual space of a, such that

α(a) = 1.

The corresponding restricted root spaces are

g−2α =




0 0 0
0 0 0
σ 0 0

 : σ ∈ Im K \ {0}

 ,

g−α =




0 0 0
d 0 0
0 d∗ 0

 : d ∈ Kn−1 \ {0}

 ,

gα =




0 b 0
0 0 b∗

0 0 0

 : bT ∈ Kn−1 \ {0}

 ,

g−2α =




0 0 γ

0 0 0
0 0 0

 : γ ∈ Im K \ {0}

 .

18
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Note that for K = R, the root spaces g±2α do not exist. Moreover, we have

g0 =



ψ 0 0
0 E 0
0 0 −ψ∗

 : E ∈ Mat(n− 1, n− 1;K), E∗ = −E,ψ ∈ K

 .
It is now easy to see that a is in fact maximal because g0 ∩ p = a. It follows that

g = g0 ⊕
⊕
λ∈Λ

gλ.

2.6 Hyperbolic spaces as semidirect products

2.6.1 Summary of the results

This section presents a view of hyperbolic spaces through a group of isometries and provides the
translation of the Riemannian and metric space structures between the different descriptions.
This group of isometries is the connected subgroup NA of OK(Q). It consists of products of

elements of two further subgroups N and A, and N is precisely the group that we later associate
with the visual boundary. Matrices in NA can be parameterised in terms of three components
(u, s, a) ∈ Kn−1 ×Im K×R, which allows for a smooth identification between this product manifold
and NA. Moreover, we demonstrate that NA acts simply transitively on KHn. We set Im R = {0}
so that we do not need to treat this case separately.
Employing the group structure of NA, we define a multiplication law for Kn−1 × Im K×R which

turns it into the semidirect product
(
Kn−1 ⋉ Im K

)
⋊R. The simply transitive action ofNA on KHn

provides a smooth map between the hyperbolic spaces and NA, and therefore also between KHn

and the semidirect product. With the aim of fully translating the Riemannian manifold structure
between the different perspectives, we use general results about symmetric spaces to express the
Riemannian metric and the distance function in terms of

(
Kn−1 ⋉ Im K

)
⋊ R. The main result of

this section is the following theorem.

Theorem 2.21. The manifold
(
Kn−1 ⋉ Im K

)
⋊R with the multiplication law

(u, s, a) · (v, t, b) = (u+ eav, s+ e2at+ Im (eauv∗), a+ b),

is isomorphic to a matrix Lie group NA which is a subgroup of OK(Q)◦, and there is a smooth
isometric correspondence of NA with KHn. In terms of this semidirect product manifold, the
left-invariant Riemannian metric looks as follows

g(0,0,0)((u, s, a), (u, s, a)) = a2 + |u|2

2 − s2

4 ,

and the left-invariant distance d is given by

4 cosh2 d(0, (v, t, b)) = 4 cosh2(b) + 2e−b cosh(b) |v|2 + e−2b
(

|v|4

4 + |t|2
)
.
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Note that the square of any nonzero s ∈ Im K is a negative real number and that therefore the
inner product g(0,0,0) is indeed positive definite.
The proof of Theorem 2.21 is divided into three parts, each addressing a specific aspect. The first

part, treated in Section 2.6.2, focuses on defining and identifying the various manifolds. Here, we
introduce the groupsN and A and derive the multiplication law on

(
Kn−1 ⋉ Im K

)
⋊R. Establishing

the simple transitive action of the group NA on KHn leads to the identification of both NA

and
(
Kn−1 ⋉ Im K

)
⋊ R with KHn. The second step involves translating the Riemannian metric

to NA. It is discussed in Section 2.6.3. Finally, the last part of the proof, covered in Section 2.6.4,
deals with expressing the distance function in the semidirect product representation. Given the
parameterisation of NA by Kn−1 × Im K × R, the translation between the two descriptions is
straightforward.

2.6.2 Smooth identification of manifolds

In this section, we give the first part of the proof of Theorem 2.21. Specifically, we show that
the hyperbolic spaces KHn can be associated with the semidirect product (Kn−1 ⋉ Im K) ⋊ R,
endowed with the multiplication law stated in Theorem 2.21. This semidirect product is intro-
duced through the product of two subsets N and A of OK(Q), which inherit a group structure
from the group OK(Q). We first define these sets and the set NA, which consists of products of
elements from N and A, derive the group multiplication and inversion laws and use them to define
the semidirect product. Furthermore, we show that the group action of NA on KHn is simply
transitive. The last statement yields the smooth identification of KHn and NA as well as KHn

and
(
Kn−1 ⋉ Im K

)
⋊R. Our approach is based on Section 10.5 in [LD23].

Definition 2.22. We define the following subsets of OK(Q).

• Let a ∈ R and define

A(a) :=


ea 0 0
0 In−1 0
0 0 e−a

 .
By A we denote the one-parameter set of matrices of this form, that is,

A = {A(a) : a ∈ R} .

• Let uT ∈ Kn−1 and s ∈ Im K. We define

h(u, s) :=


1 u |u|2

2 + s

0 In−1 u∗

0 0 1

 .
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By N we denote the set of all such matrices, that is,

N =
{
h(u, s) : uT ∈ Kn−1, s ∈ Im K

}
.

• By NA we denote the set of products of matrices in N and A, that is,

NA =
{
h(u, s)A(a) : uT ∈ Kn−1, s ∈ Im K, a ∈ R

}
.

Using Proposition 2.16, it is a simple calculation to check that N , A and NA are subsets of OK(Q).
For convenience, we drop the more accurate notation uT ∈ Kn−1 when referring to the row vectors
in the matrices of N from now on and simply write u ∈ Kn−1.
The next lemma summarises some multiplication laws in N , A and NA that will be useful for the

following proofs.

Lemma 2.23. The multiplication of matrices in N and A satisfies the following.

(a) For u ∈ Kn−1, s ∈ Im K and a ∈ R we have

A(a)h(u, s) = h(eau, e2as)A(a).

(b) For u, v ∈ Kn−1 and s, t ∈ Im K we have

h(u, s)h(v, t) = h(u+ v, s+ t+ Im (uv∗)).

(c) For a, b ∈ R we have

A(a)A(b) = A(a+ b).

Proof. The lemma can be proven by carrying out the matrix computations.
To prove (a), let u ∈ Kn−1, s ∈ Im K and a ∈ R. We compute the matrix product

A(a)h(u, s) =


ea 0 0
0 In−1 0
0 0 e−a




1 u |u|2
2 + s

0 In−1 u∗

0 0 1



=


ea eau ea

(
|u|2

2 + s
)

0 In−1 u∗

0 0 e−a



=


1 eau e2a

(
|u|2

2 + s
)

0 In−1 eau∗

0 0 1



ea 0 0
0 In−1 0
0 0 e−a

 = h(eau, e2as)A(a).
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For the proof of (b), let u, v ∈ Kn−1 and s, t ∈ Im K. We determine the multiplication law

h(u, s)h(v, t) =


1 u |u|2

2 + s

0 In−1 u∗

0 0 1




1 v |v|2
2 + t

0 In−1 v∗

0 0 1



=


1 u+ v |u|2+|v|2

2 + uv∗ + s+ t

0 In−1 u∗ + v∗

0 0 1

 = h(u+ v, s+ t+ Im (uv∗)),

where we used the identity |u+ v|2 = |u|2 + |v|2 + 2Re (uv∗) to rewrite

|u|2 + |v|2

2 + uv∗ = |u+ v|2

2 + Im (uv∗).

Moreover, for the proof of (c), let a, b ∈ R. Then

A(a)A(b) =


ea 0 0
0 In−1 0
0 0 e−a



eb 0 0
0 In−1 0
0 0 e−b



=


ea+b 0 0

0 In−1 0
0 0 e−(a+b)

 = A(a+ b).

Equipped with these multiplications laws, we characterise the group structure of NA.

Lemma 2.24. We obtain the following multiplication and inversion laws for elements in NA.

(a) For u, v ∈ Kn−1, s, t ∈ Im K and a, b ∈ R it holds that

h(u, s)A(a)h(v, t)A(b) = h(u+ eav, s+ e2at+ Im (eauv∗))A(a+ b).

(b) For u ∈ Kn−1, s ∈ Im K, a ∈ R it holds that

(h(u, s)A(a))−1 = h(−e−au,−e−2as)A(−a).

Proof. For the proof of (a), let u, v ∈ Kn−1, s, t ∈ Im K and a, b ∈ R. Using the results from
Lemma 2.23, we obtain

h(u, s)A(a)h(v, t)A(b) = h(u, s)h(eav, e2at)A(a)A(b)

= h(u+ eav, s+ e2at+ Im (eauv∗))A(a+ b).

Finally, to prove (b), we again use the previously derived multiplication laws to see that

h(−e−au,−e−2as)A(−a)h(u, s)A(a) = In+1.
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The statement follows from the properties of the matrix inverse.

We derive some important statements about N,A and NA.

Lemma 2.25. The following hold.

(a) A and N are subgroups of OK(Q)◦.

(b) NA is a subgroup of OK(Q)◦.

(c) N is normal in NA.

Proof. To prove (a), note that In+1 = A(0) = h(0, 0) is an element of both A and N . The sets are
closed under multiplication, this follows from Lemmas 2.23. To see that they are also closed under
inversion, we apply part (b) of Lemma 2.24 while setting a = 0 or u = 0 and s = 0 respectively.
From the definition of N,A and NA it is clear that they are connected.
The statement (b) now immediately follows from Lemma 2.24.
To prove (c), let u, v ∈ Kn−1, s, t ∈ Im K and a ∈ R. With Lemma 2.24 we see that

h(u, s)A(a)h(v, t)(h(u, s)A(a))−1

= h(u, s)A(a)h(v, t)h(−e−au,−e−2as)A(−a)

= h(u, s)h(ea(v − e−au), e2a(t− e−2as+ Im (−e−avu∗)))A(a)A(−a)

= h(u, s)h(eav − u, e2at− s+ e2aIm (−e−avu∗))),

and from Lemma 2.23 we know that this is in N .

Using the group structure of NA and its obvious identification with Kn−1 × Im K × R, we arrive
at the following definition.

Definition 2.26. By
(
Kn−1 ⋉ Im K

)
⋊R we denote the manifold Kn−1 × Im K×R equipped with

the multiplication law

(u, s, a) · (v, t, b) = (u+ eav, s+ e2at+ Im (eauv∗), a+ b).

Per construction, we can identify NA with the semidirect product
(
Kn−1 ⋉ Im K

)
⋊R.

Corollary 2.27. The map

φ :
(
Kn−1 ⋉ Im K

)
⋊R → NA

(u, s, a) 7→ h(u, s)A(a)

is an isomorphism of Lie groups.

Moreover, we can show that NA acts simply transitively on the hyperbolic space KHn. This
allows us to derive the identification of the manifolds stated in Theorem 2.21.

Proposition 2.28. The subgroup NA acts simply transitively on KHn.
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Proof. Let ô = (1, 0, · · · , 0, 1) and o = [ô]. A simple calculation shows that

h(u, s)A(a).o =


e2a + |u|2

2 + s

u∗

1

 .
Let [x] ∈ KHn with representative x = (x1, · · · , xn, 1). Then, the equation h(u, s)A(a).ô = x

is equivalent to the system of equations x1 = e2a + |u|2
2 + s and (x2, · · · , xn) = ū, so we set

u = (x2, · · · , xn). Moreover, we can choose s = Im x1 and a = 1
2 log(Re x1 − |u|2

2 ). Note that
the last equation must have a solution because [x] ∈ KHn implies that Re x1 − |u|2

2 = −⟨x |x⟩ is
positive. If K = R, we have s = 0, which is consistent with R not having an imaginary part. It is
important that the solution of these equations are unique because we fixed a lift of [x] by setting
the last entry in homogeneous coordinates to 1.
For general [y] ∈ KHn, we now know that there exists a unique gy ∈ NA such that gy.o = [y].

With Lemma 2.24 we obtain its inverse g−1
y . Moreover, for each [x] ∈ KHn there is a unique gx

with gx.o = [x]. We can thus write gxg−1
y .[y] = [x].

Together with Corollary 2.27, this proposition provides the wanted identification and therefore
proves the first part of Theorem 2.21.

Corollary 2.29. The map (u, s, a) 7→ h(u, s)A(a).o gives a smooth identification between KHn

and
(
Kn−1 ⋉ Im K

)
⋊R as manifolds.

2.6.3 The Riemannian metric

Without explicitly stating it, we have proven the first part of the following special case of a more
general result from the theory of symmetric spaces (see for example [Hel78] and the introduction to
our Section 2.5). We point out that due to the fact that the group action is simply transitive, the
point stabiliser of o is trivial and therefore, the familiar quotient NA⧸StabNA(o) can be identified
with NA.

Fact 2.30. The orbit map

orbo : NA → KHn, g 7→ g.o

provides a smooth correspondence between the manifolds NA and KHn. Moreover, given that
orbo(e) = o, its differential is a isomorphism of tangent spaces,

deorbo : TeNA → ToKHn, (2.5)

where e = h(0, 0)A(0) is the identity element of NA.

With these isomorphisms, we can explicitly derive an expression for the Riemannian metric g

on KHn in terms of NA. This is the next step in proving Theorem 2.21.
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For v, w ∈ TeNA, we set

g(NA)
e (v, w) = go(deorbo(v), deorbo(w)). (2.6)

It is sufficient to determine the metric of the Lie group NA at the identity, as we require it to be
left-invariant. Hence, ge can be translated to other points using left multiplication in NA. Let
u ∈ Kn−1, s ∈ Im K and a ∈ R, then

Lh(u,s)A(a)(e) = h(u, s)A(a),

and the map Lh(u,s)A(a) is a diffeomorphism (with smooth inverse L(h(u,s)A(a))−1). Therefore,

deLh(u,s)A(a) : TeNA → Th(u,s)A(a)NA

is an isomorphism. Then, the metric on Th(u,s)A(a)NA can be pulled back to the metric on TeNA,

g
(NA)
h(u,s)A(a) = L∗

h(u,s)A(a)g
(NA)
e .

The tangent space TeNA is of course the Lie algebra of NA. In the next lemma, we determine its
elements.

Lemma 2.31. The Lie algebra of NA can be written as a direct sum of vector spaces,

Lie(NA) = n ⊕ a,

where n contains matrices of the form

v(u, s) =


0 u s

0 0 u∗

0 0 0

 , where u ∈ Kn−1 and s ∈ Im K,

and a contains matrices of the form

w(a) =


a 0 0
0 0 0
0 0 −a

 , where a ∈ R.

Proof. This follows directly from the definitions of N and A.

We proceed to understanding the orbit map and its differential. It is useful to choose a repre-
sentative ô of o and first determine the orbit map orbô : NA → Kn,1 and its differential, and then
project the result into the hyperbolic space KHn respectively its tangent space, using the fact that
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the following diagrams commute,

NA
orbô−→ Kn,1

idNA ↓ ↓ π

NA
orbo−→ KHn

and

TeNA
deorbô−→ TôKn,1

idTeNA ↓ ↓ dôπ .

TeNA
deorbo−→ ToKHn

We choose the representative ô = (1, 0, · · · , 0, 1) and determine orbô and deorbô in the following
lemma.

Lemma 2.32. For h(u, s)A(a) ∈ NA, where u ∈ Kn−1, s ∈ Im K and a ∈ R, it is

orbô(h(u, s)A(a)) =


ea + e−a

(
|u|2

2 + s
)

e−au∗

e−a

 ,

and for v(u, s) + w(a) ∈ Lie(NA), where u ∈ Kn−1, s ∈ Im K and a ∈ R, we have

deorbô(v(u, s) + w(a)) =


a+ s

u∗

−a

 .
Proof. These are straightforward calculations.

To obtain deorbo from the results of Lemma 2.32, we need an observation about the differential of
the projection.

Lemma 2.33. The kernel of dôπ is the following set,

ker dôπ = spanK{ô}.

Proof. We prove the lemma for the case K = R only here and defer the general proof to Section C
of the appendix. The other two cases are not fundamentally different, but there are more real
coordinates, leading to lengthier calculations and expressions. In fact, the general proof shows
that the cases K = C,H can be thought of as replacing the real numbers in the proof below with
complex numbers respectively quaternions.
First, we note that for any [(x1, · · · , xn+1)] ∈ RHn it holds that

⟨x |x⟩ =
n∑
i=2
x1

2 − 2x1xn+1 < 0,
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and therefore xn+1 ̸= 0. This allows us to choose coordinates on RHn by setting

φ : RHn → Rn

[(x1, · · · , xn+1)] 7→
(
x1x

−1
n+1, · · · , xnx−1

n+1

)
.

This is independent of the choice of a representative because when replacing the representative x
of [x] by a scalar multiple xλ for some λ ∈ R \ {0}, the scalar cancels in φ([xλ]). In terms of these
coordinates, the projection π can be expressed as

φ(π(x1, · · · , xn+1)) =
(
x1x

−1
n+1, · · · , xnx−1

n+1

)
.

Its differential at ô can now be computed explicitly, it is

dô(φ ◦ π) =


1 0 · · · 0 −1
0 1 · · · 0 0
... . . . ...
0 0 · · · 1 0

 ,

and we can read off its kernel,

ker dôπ =
{

(λ, 0, · · · , 0, λ)T : λ ∈ R
}
.

Obtaining both orbo and deorbo is now simple.

Proposition 2.34. For h(u, s)A(a) ∈ NA, where u ∈ Kn−1, s ∈ Im K and a ∈ R, it is

orbo(h(u, s)A(a)) =


ea + e−a

(
|u|2

2 + s
)

e−au∗

e−a

 ,

and for v(u, s) + w(a) ∈ Lie(NA), where u ∈ Kn−1, s ∈ Im K and a ∈ R, the tangent vector
deorbo(v(u, s) + w(a)) ∈ ToKHn in the model where we identify ToKHn with ô⊥ is represented by
(a+ s

2 , u
∗,−a− s

s). We also write this as

deorbo(v(u, s) + w(a)) =


a+ s

2
u∗

−a− s
s

 .
Proof. The statement about orbo is clear. To see that the statement about the differential of the
orbit map is true, we recall from Lemma 2.32 that

deorbô(v(u, s) + w(a)) =


a+ s

u∗

−a

 ,
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and we can use Lemma 2.33 to find the representative of the tangent vector dôπ(a + s, u∗,−a) in
our model of the tangent space ToKHn as ô⊥, which is

deorbo(v(u, s) + w(a)) =


a+ s

2
u∗

−a− s
s

 .

To express the Riemannian metric in terms of NA using (2.6), we only need to derive g
(NA)
e

from go. We therefore determine go.

Lemma 2.35. Using the identification of ToKHn with ô⊥, it holds for any two tangent vectors
U, V ∈ ToKHn represented by u, v ∈ ô⊥, where u = (u1, · · · , un+1) and v = (v1, · · · , vn+1), that

go(U, V ) = u1v1 + 1
2

n∑
i=2
uivi.

Proof. First note that

(1, 0, · · · , 0, 1)⊥ =
{

(y1, · · · , yn+1) ∈ Kn+1 : yn+1 = −y1
}
.

This implies that un+1 = −u1 and vn+1 = −v1. Inserting this into the definition of the Riemannian
metric (2.2), we find

go(U, V ) = −⟨u | v⟩
⟨ô | ô⟩

= 1
2

(
n∑
i=2
uivi − u1vn+1 − un+1v1

)

= 1
2

(
n∑
i=2
uivi + u1v1 + u1v1

)

= u1v1 + 1
2

n∑
i=2
uivi.

With all these pieces, we can express the Riemannian metric in terms of NA. Note that due to
the polarisation identity, it is sufficient to determine the inner product g(NA)

e only for identical
arguments.

Proposition 2.36. Let u ∈ Kn−1, s ∈ Im K and a ∈ A. Then

g(NA)
e (v(u, s) + w(a), v(u, s) + w(a)) = a2 + |u|2

2 − s2

4 .

Proof. Using (2.6) and the results from Proposition 2.34 and Lemma 2.35, we find

g(NA)
e (v(u, s) + w(a), v(u, s) + w(a)) = go(deπo(v(u, s) + w(a)), deπo(v(u, s) + w(a)))

= 1
2
〈
(a+ s

2 , u
∗,−a− s

2
∣∣∣a+ s

2 , u
∗,−a− s

2)
〉

= a2 + |u|2

2 − s2

4 .
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Note that this is indeed positive definite because for s ∈ Im K with s = s1i + s2j + s3k (where
s1, s2, s3 ∈ R and we take s2 = s3 = 0 if K = C and s1 = s2 = s3 = 0 if K = R), it is
−s2 = s2

1 + s2
2 + s2

3.
With the identification of NA with

(
Kn−1 ⋉ Im K

)
⋊ R from Corollary 2.27, we have therefore

proven the second part of Theorem 2.21.
Before proceeding to translating the distance function to NA and the semidirect product, we add

a further note about the Riemannian metric on NA. For calculations, another inner product on
the Lie algebra Lie(NA) is often convenient, which is the trace form

(X,Y ) 7→ Re tr(X∗Y ).

In the following, we show that, up to irrelevant scalar prefactors, the trace form defines the same
left-invariant metric as the Riemannian metric on KHn after identifying the tangent spaces via (2.5).
We begin by calculating the trace form on Lie(NA).

Lemma 2.37. The trace form defines a positive definite inner product on TeNA, which is, for
u ∈ Kn−1, s ∈ Im K and a ∈ R, given by

(v(u, s) + w(a), v(u, s) + w(a)) 7→ 2a2 + 2 |u|2 − s2.

Proof. Let u ∈ Kn−1, s ∈ Im K and a ∈ R, then

Re tr((v(u, s)+w(a))∗(v(u, s)+w(a))) = Re tr


a u s

0 0 u∗

0 0 −a


∗

a u s

0 0 u∗

0 0 −a

 = 2a2+2 |u|2−s2.

Comparing the results of Proposition 2.36 and Lemma 2.37 yields the following corollary.

Corollary 2.38. The inner product resulting from the trace form corresponds, up to rescaling, to
the Riemannian metric on NA.

2.6.4 The distance function

The goal of this section is to express the distance function in terms of NA. We follow Section 10.5
in [LD23]. Using Fact 2.30, we know that the distance function on NA is related to the distance
function d on KHn by

d(NA)(h(u, s)A(a), h(v, t)A(b)) = d(orbo(h(u, s)A(a)), orbo(h(v, t)A(b))). (2.7)

Given that we defined d using the quadratic form Q, we first need to express ⟨· | ·⟩ in terms of the pa-
rameters ofNA. Since this is done through representatives, we specify a way to lift orbo(h(u, s)A(a))
into Kn,1. As in the previous sections, we let ô be the representative of o with ô = (1, 0, · · · , 0, 1).

29



The Visual Boundaries of Hyperbolic Spaces Paula Heim

Due to the fact that the group action of NA is simply transitive, we can identify all [x] ∈ KHn

with a unique element h(u, s)A(a) ∈ NA by choosing u ∈ Kn−1, s ∈ Im K and a ∈ R such that
h(u, s)A(a).o = [x]. Further, we define x̂ ∈ Kn,1 to be the representative of [x] that is given
by orbô(h(u, s)A(a)). We know that the definition of the distance function (2.1) is independent of
the choice of a representative so that we can evaluate it for representatives of the form x̂.
We start with three lemmas about the evaluation of ⟨· | ·⟩.

Lemma 2.39. Let [x] ∈ KHn, then ⟨x̂ | x̂⟩ = −2.

Proof. From Proposition 2.20 we know that there exists an element gx ∈ NA such that gx.o = [x].
The element gx is an isometry which implies that

⟨x̂ | x̂⟩ = ⟨gx.ô | gx.ô⟩ = ⟨ô | ô⟩ = −2.

Our next goal is to find ⟨x̂ | ŷ⟩ for general x̂, ŷ ∈ KHn. To do so, we first determine ⟨ô | ŷ⟩.

Lemma 2.40. Let [y] ∈ KHn and h(v, t)A(b) ∈ NA be such that h(v, t)A(b).o = [y]. Then

|⟨ô | ŷ⟩|2 = 4 cosh2(b) + 2e−b cosh(b) |v|2 + e−2b
(

|v|4

4 + |t|2
)
.

Proof. We prove the lemma by explicitly writing ⟨ô | ŷ⟩. To do so, we determine ŷ,

ŷ = h(v, t)A(b).ô =


eb + e−b

(
|v|2

2 + t
)

e−bv∗

e−b

 .
The calculation of ⟨ô | ŷ⟩ is now straightforward. We find

⟨ô | ŷ⟩ = ôTKŷ = −2 cosh(b) − e−b
(

|v|2

2 + t

)
.

Squaring the norm of the result yields

|⟨ô | ŷ⟩|2 = 4 cosh2(b) + 2e−b cosh(b) |v|2 + e−2b
(

|v|4

4 + |t|2
)
.

With the previous lemma, we can determine ⟨x̂ | ŷ⟩ for any [x], [y] ∈ KHn.

Lemma 2.41. For [x], [y] ∈ KHn let h(u, s)A(a) and h(v, t)A(b) be the unique elements in NA

such that h(u, s)A(a).o = [x] and h(v, t)A(b).o = [y]. Then

|⟨x̂ | ŷ⟩|2 = 4 cosh2(b−a)+2e−a−b cosh(b−a) |v − u|2 +e−2(a+b)
(

|v − u|4

4 + |t− s− Im (uv∗)|2
)
.

Proof. To prove the lemma, we make use of the fact that ⟨· | ·⟩ is invariant under multiplication
of both arguments by elements of NA. Moreover, we use the group structure of NA as given in
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Lemma 2.24 to trace the general case back to the expression computed in Lemma 2.40. This yields

⟨x̂ | ŷ⟩ = ⟨h(u, s)A(a).ô |h(v, t)A(b).ô⟩

= ⟨ô | (h(u, s)A(a))−1h(v, t)A(b).ô⟩

= ⟨ô |h(−e−au,−e−2as)A(−a)h(v, t)A(b).ô⟩

= ⟨ô |h(e−a(v − u), e−2a(t− s− Im (uv∗)))A(b− a).ô⟩

= −2 cosh(b− a) − e−(b−a)
(
e−2a |v − u|2

2 + e−2a(t− s− Im (uv∗))
)
.

After squaring the norm of this result, we arrive at

|⟨x̂ | ŷ⟩|2 = 4 cosh2(b−a)+2e−a−b cosh(b−a) |v − u|2 +e−2(a+b)
(

|v − u|4

4 + |t− s− Im (uv∗)|2
)
.

Equipped with these lemmas, we are ready to express the distance function in terms of NA and
the semidirect product. We denote both distance functions as d(NA) because the identification
of NA with

(
Kn−1 ⋉ Im K

)
⋊R is straightforward.

Proposition 2.42. With the identification of NA with KHn from Fact 2.30 and the identification
of
(
Kn−1 ⋉ Im K

)
⋊R with NA from Corollary 2.27, the distance on

(
Kn−1 ⋉ Im K

)
⋊R is given by

4 cosh2 d(NA)(0, (v, t, b)) = 4 cosh2(b) + 2e−b cosh(b) |v|2 + e−2b
(

|v|4

4 + |t|2
)
.

It is left-invariant with respect to the product structure of
(
Kn−1 ⋉ Im K

)
⋊R.

Proof. The left-invariance of the distance function follows from the definition of the distance
on KHn and the fact that the action of

(
Kn−1 ⋉ Im K

)
⋊R on itself is by isometries. It is therefore

sufficient to determine the distance of any element (v, t, b) ∈
(
Kn−1 ⋉ Im K

)
⋊ R to the iden-

tity (0, 0, 0). This is achieved by using (2.7) and inserting the results of Lemmas 2.39 and 2.40 into
the definition of the distance function (2.1). The result of this procedure is easily seen to be

4 cosh2 d(NA)(0, (v, t, b)) = 4 cosh2(b) + 2e−b cosh(b) |v|2 + e−2b
(

|v|4

4 + |t|2
)
.

This proposition finishes the proof of Theorem 2.21.

For further reference, we derive an expression for the distance of any two points (u, s, a) and (v, t, b)
in
(
Kn−1 ⋉ Im K

)
⋊R.
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Corollary 2.43. The distance of (u, s, a), (v, t, b) ∈
(
Kn−1 ⋉ Im K

)
⋊R is given by

4 cosh2 d(NA)((u, s, a), (v, t, b)) =

4 cosh2(b− a) + 2e−a−b cosh(b− a) |v − u|2 + e−2(a+b)
(

|v − u|4

4 + |t− s− Im (uv∗)|2
)
.

3 The visual boundaries of the K-hyperbolic spaces

3.1 The visual boundary

The purpose of this section is, besides introducing the concept of the visual boundary, to prove that
three objects, the group N from Definition 2.22, the visual boundary minus one point, referred to
as pt, and any horosphere centred at pt, are identified with each other. We first define the visual
boundary as the set of equivalence classes of geodesic rays, where two geodesic rays are equivalent
whenever they are asymptotic. Subsequently, we prove that for the space KHn we can associate
its visual boundary ∂KHn (minus {pt}) with N . We further show that the orbits of N are the
horospheres centred at pt. This section follows Chapter II.10 in [BH99] and Section 11 in [LD23].
Identifying these three objects is essential to defining a subRiemannian manifold structure on the
visual boundary, as each provides a different perspective from which a given property or concept
is particularly well established.
The identification of the visual boundary ∂KHn (minus one point) with a subgroup of OK(Q)◦ is

not canonical, but it depends on the choice of the extra point in the visual boundary. All possible
choices of such a point are equivalent because OK(Q)◦ acts transitively on ∂KHn. This transitive
action enables us to translate one such subgroup into another. We can therefore choose for the
extra point our favourite point in the visual boundary, which is the point pt = [(1, 0, · · · , 0)].
Within the previously derived setup, this is our favourite point because it yields the identification
of ∂KHn \ {pt} with N .
We begin by defining the visual boundary. Recall from Section 2.3 that a unit speed geodesic ray
c : [0,∞) → KHn is a curve that satisfies

d(c(t), c(t′)) =
∣∣t− t′

∣∣ for all t, t′ ∈ [0,∞),

and that two geodesic rays c and c′ are asymptotic if there exists a constant C0 such that

d(c(t), c′(t)) ≤ C0 for all t ≥ 0.

In Lemma 2.12 we proved that we can obtain an equivalence relation on the set of unit speed geodesic
rays by defining asymptotic geodesic rays to be equivalent. We use this equivalence relation now
to define the visual boundary.

Definition 3.1. We introduce an equivalence relation on the set of geodesic rays by declaring two
geodesic rays equivalent if and only if they are asymptotic. We define the visual boundary ∂KHn

as the set of equivalence classes of unit speed geodesic rays.
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Since we modelled the hyperbolic space KHn as a subspace of KPn, there is a way to realise
its boundary as a subset of KPn. This perspective is helpful to prove that we can identify N

with ∂KHn \ {pt}.

Proposition 3.2. We can identify the visual boundary ∂KHn with the set of nullvectors in KPn,

∂KHn = {[x] ∈ KPn : ⟨x |x⟩ = 0} .

Proof. From Lemma 2.14 we know that two geodesic rays

c(t) =
[
x cosh

(√
⟨u |u⟩t

)
+ u√

⟨u |u⟩
sinh

(√
⟨u |u⟩t

)]
,

c′(t) =
[
y cosh

(√
⟨v | v⟩t

)
+ v√

⟨v | v⟩
sinh

(√
⟨v | v⟩t

)]
,

where we take [x], [y] ∈ KHn and u, v ∈ x⊥, y⊥ respectively, are asymptotic if and only if[
x+ u√

⟨u|u⟩

]
=
[
y + v√

⟨v|v⟩

]
. We note that

[
x cosh

(√
⟨u |u⟩t

)
+ u sinh

(√
⟨u |u⟩t

)]
=
[
x+ u√

⟨u |u⟩
tanh

(√
⟨u |u⟩t

)]

converges to
[
x+ u√

⟨u|u⟩

]
as t → ∞, where the limit is taken with respect to the quotient topology

of KPn. It is easy to see that
[
x+ u√

⟨u|u⟩

]
is a nullvector. We assume again ⟨x |x⟩ = −1, otherwise

we replace x by x√
|⟨x|x⟩|

and u by u√
|⟨x|x⟩|

respectively to obtain

〈
x+ u√

⟨u |u⟩

∣∣∣∣∣ x+ u√
⟨u |u⟩

〉
= ⟨x |x⟩ + ⟨u |u⟩

⟨u |u⟩
= −1 + 1 = 0.

This concludes the proof that we can identify every equivalence class with such a nullvector.

It remains to show that the other implication also holds, that is, given a nullvector [w] ∈ KPn,
there exists an equivalence class of geodesic rays that can be associated with it. We therefore
choose any x ∈ KHn with ⟨x |x⟩ = −1. It must hold that ⟨x |w⟩ ≠ 0 because the restriction
of ⟨· | ·⟩ to x⊥ is positive definite, so that no w ∈ x⊥ with w ̸= 0 could satisfy ⟨w |w⟩ = 0. Then it
is true that −w⟨x |w⟩−1 − x ∈ x⊥, because

⟨x |w⟨x |w⟩−1 + x⟩ = ⟨x |x⟩ + ⟨x |w⟩⟨x |w⟩−1 = −1 + 1 = 0,

and that ⟨w⟨x |w⟩−1 + x |w⟨x |w⟩−1 + x⟩ = 1, because

⟨w⟨x |w⟩−1 + x |w⟨x |w⟩−1 + x⟩ = ⟨x |x⟩ + 2Re ⟨x |w⟩⟨x |w⟩−1 = −1 + 2 = 1.
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Thus, we can define a geodesic ray c by setting

c(t) =
[
x cosh t+

(
−w⟨x |w⟩−1 − x

)
sinh t

]
,

and the calculation above shows that the limit point of c in KPn as t → ∞ is[
x+

(
−w⟨x |w⟩−1 − x

)]
=
[
−w⟨x |w⟩−1

]
= [w].

We can therefore characterise an equivalence class of geodesic rays uniquely by the nullvector
in KPn to which its elements converge in the topology of KPn as t → ∞. This explains why we
sometimes refer to the elements of the visual boundary as the ’points at infinity’.
The identification of ∂KHn minus one point with a subgroup of OK(Q)◦ depends on the choice

of a point in the visual boundary. We choose the point pt = [(1, 0, · · · , 0)] and define a geodesic
ray c0 by

c0(t) = [(et, 0, · · · , 0, e−t)]. (3.1)

Then pt is the limit point of c0(t) as t → ∞ with respect to the quotient topology of KPn.
Moreover, A acts by transvections on c0, that is,

A(t′).c0(t) = c0(t+ t′) for all t, t′ ∈ R.

We need the following two lemmas.

Lemma 3.3. For each h ∈ N it holds that

lim
t→∞

A(−t)hA(t) = In+1.

Proof. Let h ∈ N , then h is of the form

h =


1 u |u|2

2 + s

0 In−1 u∗

0 0 1

 ,
where u ∈ Kn−1 and s ∈ Im K. A simple matrix calculation shows that

A(−t)hA(t) =


1 e−tu e−2t

(
|u|2

2 + s
)

0 In−1 e−tu∗

0 0 1

 ,
which converges to the unit matrix as t → ∞.

Lemma 3.4. Let c0 : R → KHn be defined by (3.1). The following statements hold.

(a) N fixes lim
t→∞

c0(t).
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(b) The geodesic rays issuing from points in N.o that are asymptotic to c0 are precisely the
geodesics t 7→ h.c0(t), where h ∈ N .

Proof. Given that A acts on c0 by transvections, we can write c0(t) = A(t).c0(0). We make use of
this identity for the proof of both parts of the lemma.
To prove (a), we write lim

t→∞
c0(t) = lim

t→∞
A(t).c0(0). Then, using the left-invariance of the distance,

it is evident that for any h ∈ N ,

d(hA(t).c0(0), A(t).c0(0)) = d(A(−t)hA(t).c0(0), c0(0)),

which tends to zero as t → ∞, because from Lemma 3.3 we know that A(−t)hA(t) → In+1

as t → ∞.
For the proof of (b), consider the map t 7→ h.c0(t) for h = h(u, s) ∈ N , where u ∈ Kn−1 and
s ∈ Im K. Using the left-invariant distance function d(NA) from Proposition 2.42, we can write the
distance of two points h.c0(t) and h.c0(t′) along the curve as

4 cosh2 d(h.c0(t), h.c0(t′)) = 4 cosh2 d(NA)((u, s, t′), (u, s, t))

= 4 cosh2 d(NA)((0, 0, t′), (0, 0, t))

= 4 cosh2(t− t′),

so that d(h.c0(t), h.c0(t′)) = |t− t′| follows. We conclude that t 7→ h.c0(t) is a geodesic ray.
For proving that this geodesic ray is asymptotic to c0, we determine the distance of c0(t) and h.c0(t),

d(h.c0(t), c0(t)) = d(hA(t).c0(0), A(t).c0(0)) = d(A(−t)hA(t).c0(0), c0(0)).

To show that this vanishes as t → ∞, we write h = h(u, s) for u ∈ Kn−1 and s ∈ Im K and recall
from Lemma 2.24 that

A(t)h(u, s) = h(etu, e2ts)A(t).

Then A(−t)h(u, s)A(t) = h(e−tu, e−2ts)A(−t)A(t) = h(e−tu, e−2ts), so that with the distance
function d(NA), we have

4 cosh2 d(NA)((0, 0, 0), (e−tu, e−2ts, 0)) = 4 + 2e−2t |u|2 + e−4t
(

|u|4

4 + |s|2
)

for all t ∈ [0,∞).

Note that (0, 0, 0) corresponds to the point c0(0) and (e−tu, e−2ts, 0) corresponds toA(−t)hA(t).c0(0).
The exponentials involving t are clearly bounded by 1 for t ∈ [0,∞), so that

d(c0(t), h.c0(t)) ≤
(

arcosh
(

1 + 1
2 |u|2 + 1

4

(
|u|4

4 + |s|2
)))1/2

for all t ∈ [0,∞).

It follows that the geodesic rays c0 and h.c0 are asymptotic.
To see that these are all the geodesic rays issuing from points in N.o that are asymptotic to c0,
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recall from Lemma 2.14 that given an initial point h.o in N.o, there is precisely one asymptotic
geodesic ray c that issues from h.o and is asymptotic to c0. This geodesic ray, however, is already
known to be t 7→ h.c0(t).

Note that any geodesic ray c whose image is equal to the image of c0 (up to some geodesic line
segment of finite length) but does not necessarily have the same initial point at time t = 0 is
asymptotic to c0 because, as a consequence of the non-arbitrariness of its parameterisation, it is
related to c0 by a transvection A(tc) for some constant tc ∈ R,

c(t) = A(tc).c0(t) for all t ∈ [0,∞),

which implies that

d(c(t), c0(t)) = d(c(t), A(tc).c0(t)) = |tc| .

This is constant and hence bounded for all t ∈ R, and it follows that c0 and c are asymptotic.
Therefore, part (b) of the previous lemma is sufficient to characterise the elements of the equivalence
class of c0.
To prove that N can be identified with ∂KHn\{pt} we define the following map. Let ζ0 ∈ N.o and
u ∈ Kn−1, s ∈ Im K such that h(u, s) is the unique element in N with h(u, s).o = ζ0 (its existence
and uniqueness follow from Proposition 2.20). Define the map

ζ : R → KHn, t 7→ ζt = h(u, s)A(−t).o. (3.2)

The following lemma summarises the relevant properties of this map and allows us to extend it
to R ∪ {−∞,+∞}.

Lemma 3.5. For all ζ0 ∈ N.o, the following are true.

(a) ζ|[0,∞) is a geodesic ray.

(b) lim
t→−∞

ζt = pt.

(c) ζ∞ := lim
t→∞

ζt ∈ ∂KHn.

Proof. Note that A(−t).o = c0(−t). Then the statement (a) follows from a similar calculation as
in the proof of Lemma 3.4 (b), but is not already implied by the lemma because it only applies
to ζ|(−∞,0]. Using the left-invariance of d(NA), we can write the distance of two points ζt and ζt′

along the curve as

4 cosh2 d(ζt, ζt′) = 4 cosh2 d(NA)((u, s,−t′), (u, s,−t))

= 4 cosh2 d(NA)((0, 0,−t′), (0, 0,−t))

= 4 cosh2(t′ − t),

so that d(ζt, ζt′) = |t′ − t| follows.
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The second claim is proven in Lemma 3.4 (a).
To prove (c), we explicitly calculate ζ∞. This is

lim
t→∞

ζt = lim
t→∞


e−t + et

(
|u|2

2 + s
)

etu∗

et

 = lim
t→∞


e−2t + |u|2

2 + s

u∗

1

 =


|u|2

2 + s

u∗

1

 . (3.3)

Then
〈
( |u|2

2 + s, u∗, 1)
∣∣∣( |u|2

2 + s, u∗, 1)
〉

= 0 and with the identification ∂KHn = {[x] ∈ KPn : ⟨x |x⟩ = 0}
it follows that ζ∞ ∈ ∂KHn.

The maps ζ yield the identification of ∂KHn \ {pt} and N.o.

Proposition 3.6. The set N.o can be identified with ∂KHn \ {pt}.

Proof. Let φ : N.o → ∂KHn \ {pt} such that φ(ζ0) = ζ∞. The injectivity of the map follows from
the explicit form of ζ∞ that was determined in (3.3). It remains to prove the surjectivity of φ. We
choose x ∈ Kn,1 such that [x] ∈ ∂KHn \ {pt} and x = (x1, · · · , xn, 1). We set u = (x2, · · · , xn),
and since ⟨x |x⟩ = 0 implies that 2Re x1 =

n∑
i=2

|xi|2, we can set s = Im x1. We therefore have

φ(h(u, s).o) = [x].

At this point, it becomes apparent why we have to exclude the point pt from the visual bound-
ary ∂KHn to identify it with N.o. The identification is achieved through the map φ(h.o) =
lim
t→∞

hA(−t).o = h.

(
lim
t→∞

A(−t).o
)

. The fact that that the action of N on ∂KHn fixes pt ensures
that no other point of the visual boundary can be mapped to pt by the action of a group el-
ement of N , because otherwise we could act on pt with the inverse of this element and would
obtain limt→∞(A(−t)).o, which is a point in the visual boundary but clearly not pt.
We proceed by deriving the identification of the group N with the horospheres centred at pt.

Before proving this identification, we define horospheres in KHn.

Definition 3.7. The spheres about [xk] ∈ KHn are the level sets of the functions

ρk([x]) = ⟨x |xk⟩⟨xk |x⟩
⟨x |x⟩

.

For [xk] → [y] ∈ ∂KHn, the functions ρk converge and the horospheres centred at [y] have the form

Hr,[y] = {[x] ∈ KHn : r⟨x |x⟩ = ⟨x | y⟩⟨y |x⟩} ,

where r < 0.

Now we can prove that the orbits of N are the horospheres centred at pt.

Proposition 3.8. The orbits of N are the horospheres centred at the point pt.
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Proof. Recall from Lemma 3.4 that N fixes the point pt. Let r < 0 and [x] ∈ Hr,pt, then we
have ⟨x|pt⟩⟨pt|x⟩

⟨x|x⟩ = r. We write pt = lim
t→∞

A(t).c0(0) and choose x0 ∈ Kn,1 such that [x0] = c0(0).
Using the definition of the distance function (2.1), it is

r = lim
t→∞

⟨x |A(t).x0⟩⟨A(t).x0 |x⟩
⟨x |x⟩

= lim
t→∞

⟨A(t).x0 |A(t).x0⟩d([x], A(t).c0(0))

= lim
t→∞

⟨x0 |x0⟩d([x], A(t).c0(0)),

where the last equality holds because A(t) is an isometry. The prefactor ⟨x0 |x0⟩ is irrelevant, and
the action of any h ∈ N leaves invariant the distance d([x], A(t).c0(0)) in the limit t → ∞, because

lim
t→∞

∣∣∣d(h.[x], A(t).c0(0)) − d([x], A(t).c0(0))
∣∣∣ = lim

t→∞

∣∣∣d([x], h−1A(t).c0(0)) − d([x], A(t).c0(0))
∣∣∣

≤ lim
t→∞

d(c0(0), A(−t)h−1A(t).c0(0)) = 0,

where we used the reverse triangle inequality in the second step. Hence, [x] ∈ Hr,pt if and only
if h.[x] ∈ Hr,pt

The desired identification of N , the visual boundary (minus {pt}) and the horospheres centred
at pt now follows.

Theorem 3.9. N can be identified with ∂KHn \ {pt} and with any horosphere centred at pt.

Proof. We know from Section 2.6 that the orbit map orbo : N → N.o, h 7→ h.o is an isometric
isomorphism. Then Propositions 3.6 and 3.8 immediately imply the claim of the theorem.

3.2 Bijectivity of the exponential map

In the last section, we saw that the group N is identified with ∂KHn \ {pt}, and in the following,
we always choose the description with N when making our considerations explicit. This identifi-
cation yields convenient coordinates for the visual boundary (minus {pt}) because we can define
coordinates for N using a basis of its Lie algebra. We explain the definition of these coordinates in
detail in Section 4. The reason why this is possible is that the exponential map is a diffeomorphism.
Proving that this is true is the purpose of this section.

Proposition 3.10. The exponential map exp: gα ⊕ g2α → N is a diffeomorphism.

Proof. We begin by revisiting our knowledge of the elements of N and its Lie algebra. Per definition,
N contains matrices of the form

h(u, s) =


1 u |u|2

2 + s

0 In−1 u∗

0 0 1

 where u ∈ Kn−1 and s ∈ Im K,
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and we know from Lemma 2.31 that the Lie algebra of N is

n =




0 u s

0 0 u∗

0 0 0

 : u ∈ Kn−1, s ∈ Im K

 ,
which is clearly gα ⊕ g2α.
The exponential map is always smooth, and for proving that it is a diffeomorphism, we present its

inverse. To do so, we first compute for bα ∈ gα and b2α ∈ g2α the exponential of bα + b2α, because
this makes it easy to determine the inverse of exp. The element bα can be written as

bα =


0 u 0
0 0 u∗

0 0 0

 , where u ∈ Kn−1,

and b2α can be written as

b2α =


0 0 s

0 0 0
0 0 0

 , where s ∈ Im K.

It is easy to see that

exp(bα + b2α) =


1 u |u|2

2 + s

0 In−1 u∗

0 0 1

 ,
and that this is precisely the form in which we defined the matrices in N . Thus determining the
preimage of an element in N under the exponential map is straightforward. We define

F : N → gα ⊕ g2α

h(u, s) = 7→


0 u 0
0 0 u∗

0 0 0

+


0 0 s

0 0 0
0 0 0

 .
The map F is obviously smooth and the inverse of the exponential map, and it follows that exp is
a diffeomorphism.

3.3 The visual boundary as a subRiemannian manifold

3.3.1 subRiemannian manifolds

In this section, we establish that for K ∈ {C,H}, the visual boundary ∂KHn minus one point can
be equipped with some structure that makes it a subRiemannian manifold. This also holds when
K = R, but in that case, the visual boundary ∂RHn minus one point is isometrically isomorphic
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to Rn−1 and therefore a Riemannian manifold (which is trivially a subRiemannian manifold). The
metric on the visual boundary depends on the choice of the extra point, and even given such a choice,
there are still many different metrics possible, but these are in a sense equivalent, as discussed
below. We choose pt = [(1, 0, · · · , 0)] for the extra point because we know from Theorem 3.9
that ∂KHn \ {pt} is identified with N , but we emphasise that this choice, although convenient, is
arbitrary and does not make any conceptual difference.
In the first part of this section we introduce the concept of a subRiemannian manifold, following

Section 0.3 in [LD23], and in the second part, we explain the structure that makes the visual
boundary ∂KHn \ {pt} a subRiemannian manifold. We explicitly establish this for N , and with
Theorem 3.9 our result can easily be translated to other descriptions of the visual boundary.

Definition 3.11. A distribution ∆ is bracket-generating if every tangent vector v ∈ TM is a linear
combination of X1, [X2, X3], [X4, [X5, X6]], · · · , where X1, X2, · · · are tangent to ∆.

Definition 3.12. A subRiemannian manifold is a triple (M,∆, g), where M is a differentiable
manifold, ∆ is a bracket generating distribution and g is a smooth section of positive definite
quadratic forms on ∆.

Definition 3.13. If (M,∆, g) is a subRiemannian manifold, then a curve γ in M is horizontal if
it is piecewise smooth and γ̇(t) ∈ ∆γ(t) for all t. We call ∆p, where p ∈ M , the horizontal subspace
of TpM .

In our case, g can be obtained by restricting a Riemannian metric on M to ∆. This allows for the
definition of vertical subspaces.

Definition 3.14. Let (M, g) be a Riemannian manifold with a distribution ∆ such that (M,∆, g|∆)
is a subRiemannian manifold. Let p ∈ M and ∆p the horizontal subspace of TpM . Then its
orthogonal complement ∆⊥

p (with respect to gp) is the vertical subspace of the tangent space TpM .
A curve γ in M is vertical if it is piecewise smooth and γ̇(t) ∈ ∆⊥

γ(t) for all t.

Definition 3.15. For a subRiemannian manifold (M,∆, g), we can define a distance function, the
subRiemannian distance, by

d(p, q) = inf {Length(γ) : γ horizontal from p to q} .

This definition makes sense because the condition that ∆ is bracket-generating guarantees that
for any pair of points p, q, there is always a horizontal curve connecting them (for a proof, see
Theorem 3.1.17 in [LD23]).

3.3.2 The subRiemannian structure of the visual boundaries

In this section, we explain how to obtain a distribution ∆ and a Riemannian metric g on the groupN
from Definition 2.22 so that (N,∆, g|∆) is a subRiemannian manifold. Recall from Section 3.1 that
the orbits of N are the horospheres centred at pt, and due to the fact that NA acts simply
transitively on KHn, we can identify each horosphere with N . Moreover, we can identify N with
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∂KHn \ {pt}. This naturally (but not canonically!) provides us with a left-invariant metric on
the visual boundary by restricting the Riemannian metric on KHn to the horosphere. Since the
horospheres are embedded submanifolds of KHn, it is clear that the restriction of the Riemannian
metric on KHn is again a metric. We also know from Corollary 2.38 that this metric can be
identified with the left-invariant metric on N defined by the trace form. Of course, the metric
depends on the choice of horosphere, but since any two left-invariant metrics on a Lie group are
bi-Lipschitz equivalent [LD23, Proposition 5.4.1], the choice does not matter, because lengths and
areas obtained from different metrics differ by uniformly bounded amounts. We thus set

ge(X,Y ) = Re tr(X∗Y ) (3.4)

for X,Y ∈ TeN , and translate this to other points by left-multiplication.
Moreover, the fact that Lie(N) = gα⊕g2α enables the definition of a distribution ∆ by declaring gα

horizontal at the identity and translating this to other points through left-multiplication. Since we
have [gα, gα] = g2α, this distribution is clearly bracket-generating. Formally, we define ∆ by

∆h(u,s) = deLh(u,s)gα. (3.5)

The metric and the distribution give N (and thus the visual boundary minus {pt}) the structure
of a subRiemannian manifold. We state this important result as a theorem.

Theorem 3.16. Let N be the group associated with the visual boundary ∂KHn \ {pt} of the
K-hyperbolic space (minus the point pt). Let g be the left-invariant metric defined by (3.4) and ∆
be the distribution defined by (3.5). Then (N,∆, g|∆) is a subRiemannian manifold.

Obviously, this is less interesting when K = R than in the other cases, because in the real case, the
root space g2α does not exist, hence the whole tangent space is horizontal and the subRiemannian
distance coincides with the distance induced by the Riemannian metric, so that ∂RHn \ {pt} is
not only a subRiemannian, but a Riemannian manifold. In the complex and the quaternionic case,
however, there are one- respectively three-dimensional vertical subspaces and these are what makes
the geometry on the visual boundary exciting.
We point out that the groups N corresponding to ∂KHn \ {pt} are precisely the K-Heisenberg

groups KHn [LD23]. In the next part of the thesis, we denote the groups N as KHn for two reasons.
Firstly, we will specifically choose K (and sometimes also n), which can be made more clear in the
notation KHn. The second reason is more practical, it is simply to keep the notation in line with
the notation of our main reference.

4 Having fun with the subRiemannian manifold

4.1 The case of CHn+1

In order to present an application of the established concepts, we dedicate the final section of
the thesis to solving a geometric problem on the visual boundary. Our goal is to generalise the
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following proposition, which applies to paths in CHn+1 and is taken from a paper by Allcock [All98],
to special vertical paths in HHn+1.

Proposition. [All98, Lemma 4.3] Any regular vertical path in CHn+1 of length L is homotopic to
a horizontal path of length 2

√
πL by a homotopy of area at most 2L+ 4

√
π

3 L3/2.

We use the term ’path’ with the meaning of ’smooth curve’ here.
Allcock uses the proposition as a lemma to prove an isoperimetric inequality for the groups CHn+1.

An elaboration of the full context is beyond the scope of this thesis and we simply treat his lemma
as a statement that is interesting for the purpose of working with a subRiemannian manifold. In
the first part of this section, we show Allcock’s proof of the proposition. To do so, we establish the
subRiemannian structure of CHn+1 and in particular the horizontal and vertical subspaces in detail
by choosing coordinates and expressing the distribution in terms of these coordinates explicitly.
For choosing coordinates for CHn+1, recall from Proposition 3.10 that the exponential map is a

diffeomorphism. We can therefore choose a basis of the Lie algebra and define the coordinates
on CHn+1 through this basis, where the exponential map provides the necessary unique correspon-
dence of elements of CHn+1 to the Lie algebra elements. For b = (b1, · · · , bn) ∈ Cn and s ∈ Im C
we set

Pb :=


0 b 0
0 0 b∗

0 0 0

 ,

Ms :=


0 0 s

0 0 0
0 0 0

 ,
so that

gα = {Pb : b ∈ Cn} ,

g2α = {Ms : s ∈ Im C} .

Note that b ∈ Cn now because CHn+1 corresponds to the visual boundary of KHn+1 (minus {pt}).
There are 2n+ 1 real basis vectors in the Lie algebra. We choose the basis vectors

Xj = Pej ,

Yj = Piej ,

Z = Mi,

where ej denotes the jth standard basis vector in Rn. The only nonvanishing brackets are

[Xj , Yj ] = −2Z for all j = 1, . . . , n.

Since we have a basis of the Lie algebra of CHn+1 that identifies its elements with elements of
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Cn× Im C, which again is obviously identified with R2n+1, we can choose the following coordinates
on CHn+1,

φ : CHn+1 → R2n+1

exp(P(x1+iy1,··· ,xn+iyn) +Miz) 7→ (x1, · · · , xn, y1, . . . , yn, z),

with parameterisation

ψ : R2n+1 → CHn+1

(x1, · · · , xn, y1, . . . , yn, z) 7→ exp(P(x1+iy1,··· ,xn+iyn) +Miz).

Due to the definition of the coordinates through the exponential map, we call these the exponential
coordinates on CHn+1.

Recall from Theorem 3.16 that an inner product on TeCHn+1 can be declared using the trace form.
The basis vectors X1, · · · , Xn, Y1, · · · , Yn, Z are orthogonal with respect to this inner product, and
rescaling the inner product makes them orthonormal. We take the rescaled inner product to be ge.
A metric on TpCHn+1 can be defined by translating this inner product to other points p by left
multiplication Lp,

gp = L∗
pge.

The choice of metric is not canonical, there are many different left-invariant metrics that we could
choose instead, but they are all bi-Lipschitz equivalent to the one obtained from the trace form
so that statements about lengths and areas would differ by at most a uniformly bounded amount.
This might result in different prefactors in the statement of Proposition 4.3, but each metric yields
the same power laws in L.

We identify the horizontal and vertical subspaces next. Following Theorem 3.16, the horizontal
subspace at the identity He is given by gα, which is

He = spanR{X1, · · · , Xn, Y1, · · · , Yn},

and it can be translated to other points p ∈ CHn+1 by left-multiplication,

Hp = deLpHe = spanR{deLpX1, · · · , deLpXn, deLpY1, · · · , deLpYn}.

At each point p ∈ CHn+1, the vertical subspace is the orthogonal complement Vp = H⊥
p . From

our choice of basis vectors it is clear that

Vp = spanR{deLpZ} for all p ∈ CHn+1.

To prove the proposition, it is sufficient to provide all expressions in CH2, because once we have
the desired homotopy that takes a vertical path to a horizontal path in CH2, we can use this
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horizontal path to define a horizontal path in CHn+1 for any other n ∈ N by setting the remaining
coordinates to zero. It is easy to see that this yields a horizontal path of the same length and does
not change the area of the homotopy.
We therefore restrict the following discussion to CH2. In terms of exponential coordinates, left

multiplication becomes

(φ ◦ Lψ(x,y,z) ◦ ψ)(a, b, c) = (x+ a, y + b, z + c+ (xb− ay)),

with differential

dφ(e)(φ ◦ Lψ(x,y,z) ◦ ψ) =


1 0 0
0 1 0

−y x 1

 .
The horizontal subspaces can be described as the kernels of a 1-form,

Hp = ker ξp,

where we defined

ξ = φ∗η, with η(x,y,z) = dz − (xdy − ydx) .

A curve β : I → CH2 is horizontal if and only if β′(t) ∈ ker ξβ(t) for all t ∈ I, where β′ denotes
(here and in the rest of this section) the derivative of β by the curve parameter.
The representation of the horizontal subspaces as kernels of the 1-form ξ yields a geometric in-

terpretation for the z-coordinate in the case of CH2. We use Stokes’ theorem to see that for the
projection onto the first two components of the horizontal path in coordinates σ = π(φ ◦ β), we
have ∫

σ
dz =

∫
σ
(xdy − ydx) =

∫
Dσ

d(xdy − ydx) = 2
∫
Dσ

dx ∧ dy = 2Area(Dσ),

where Dσ is the area in R2 which is bounded by σ and line segments from the origin to the start-
and endpoint of σ. This makes sense because the integral

∫
λ(xdy − ydx) vanishes whenever λ is a

radial line segment so that we can always add it to σ to obtain a closed loop which bounds Dσ.
For a horizontal path in coordinates, the z-coordinate therefore measures twice the area that its
projection onto R2 encloses (potentially after closing it with radial line segments).
Our considerations yield a way of lifting paths in R2 to horizontal paths in CH2.

Definition 4.1. Let α be a path in R2 and π : CH2 → R2, ψ(x, y, z) 7→ (x, y). Then any horizontal
curve α̃ in CH2 that satisfies the condition

π(α̃) = α

is a horizontal lift of α.
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The existence of horizontal lifts is guaranteed by the next lemma.

Lemma 4.2. For any path α in R2 there exists a horizontal curve α̃ such that π(α̃) = α. If we
specify one point through which the curve passes at some time t0, this curve it unique.

Proof. Let I ⊂ R be an interval and α : I → R2 be a smooth curve. We denote

α(t) =
(
αx(t)
αy(t)

)
.

Our previous considerations show that a horizontal curve α̃ with π(α̃) = α of the form

φ(α̃(t)) =


α̃x(t)
α̃y(t)
α̃z(t)


must satisfy α̃x = αx and α̃y = αy, and an equation determining the third component is obtained
from the condition that the curve α̃ is horizontal, which yields

α̃′
z = αxα

′
y − αyα

′
x. (4.1)

The equation (4.1) is a simple first-order differential equation, and it is solved by

α̃z(t) − α̃z(t0) =
∫ t

t0
αx(s)α′

y(s) − αy(s)α′
x(s)ds. (4.2)

Recall that, by assumption, the curve α is smooth, thus its coordinates are smooth functions.
Hence it is in principle possible to obtain a solution to this integral, although it may not always
be a function that can be written down explicitly. Moreover, we see that, given a point α̃z(t0), the
solution of (4.1) is unique.

With these preliminaries, we are ready to prove the proposition. Note that, due to the choice of
a different metric, our coefficients are slightly different from those of the reference.

Proposition 4.3. [All98, Lemma 4.3] Any regular vertical path in CHn+1 of length L is homotopic
to a horizontal path of length

√
2πL by a homotopy of area at most 2L+ 8

√
π

3 L3/2.

Proof. It is sufficient to provide the homotopy for n = 1, because for larger n, we obtain a horizontal
path in CHn+1 from the horizontal path in CH2 by setting all other coordinates to zero.
We briefly explain the motivation for the proposed solution. In the context in which Allcock uses

this result, it is desirable that the horizontal path to which the homotopy maps a given vertical
path has minimum length. Considering that the z-coordinate of a horizontal path in coordinates
is equal to twice the area enclosed by the projection of the path into R2, the goal of finding an
appropriate horizontal path can therefore be reduced to lifting a path in R2 horizontally whose
length in R2 is minimal while enclosing as much area as possible. The solution of this problem is
easy: it is a circle.
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We proceed to presenting the explicit construction of these paths together with the homotopy so
that we can estimate its area. We start by defining the circles and then determine their horizontal
lifts. Let St be the path in R2 that travels counterclockwise along the circle of radius t centred
at (−t, 0). This path traverses the origin at times t = 0 and t = 2π and is given by

St(θ) =
(

−t
0

)
+ t

(
cos θ
sin θ

)
.

Note that the curve parameter is θ, while the radius t remains constant for a given St and will later
take on the role of parameterising the vertical path.

From Lemma 4.2 we know that there are horizontal lifts S̃t of the paths St to CH2. If we demand
that the horizontal lifts S̃t pass through the origin at t = 0, they are unique and their explicit form
can be obtained from (4.2). By carrying out the computation, we see that they are given by

φ(S̃t(θ)) =


t cos θ − t

t sin θ
t2(θ − sin θ)

 .

Any vertical path γ : I → CH2 satisfies

γ′(t) ∈ Vγ(t),

which implies that in coordinates, it has the form φ(γ(t)) = (v0, γz(t)) , where v0 ∈ R2 is constant.
We may assume v0 = 0, otherwise we shift our coordinates accordingly. Thus every regular vertical
path γ : I → CH2 starting at the origin is, up to reparameterisation, given by

φ(γ(t)) =


0
0

2πt2

 .
It is important to note that we constructed the circles in R2 such that γ(t) is precisely S̃t(2π).
If we choose the domain of γ to be I = [0,

√
L/(2π)], the vertical path has length L. We set

T =
√
L/(2π) and define the homotopy

Γ: [0, T ] × [0, 2π] → R

(t, θ) 7→ S̃t(θ).

Given that Γ(t, 2π) = γ(t) and Γ(T, θ) = S̃T (θ), it follows that the vertical path γ is homotopic to
the horizontal path S̃T .

To determine the length of S̃T , we observe that on the horizontal subspaces in coordinates, the
metric is simply the Euclidean metric. Hence the length of horizontal paths coincides with the
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Euclidean length of their projections into R2. It follows that

Length(S̃T ) = 2πT =
√

2πL.

Bounding the area of Γ is therefore all that remains to do to finish the proof. We first determine

∥∥∥∥∂Γ
∂θ

∥∥∥∥ =
∥∥∥∥∥∂S̃t∂θ

∥∥∥∥∥ =
∥∥∥∥∂St∂θ

∥∥∥∥ = t,

where the second equality follows because S̃t and thus ∂S̃t
∂θ is horizontal, and the third equality is

a simple calculation in R2.

The other partial derivative has a horizontal and a vertical part, so that we write

∂Γ
∂t

= h(t, θ) + v(t, θ),

where h is horizontal and v vertical. Using that the norm of the horizontal part coincides with the
Euclidean norm of the projection of the horizontal part into R2, we see that

∥h(t, θ)∥ =
∥∥∥∥∥∂S̃t∂t

∥∥∥∥∥ =
∥∥∥∥∂St∂t

∥∥∥∥ ≤ 2.

The inequality follows from an explicit calculation of
∥∥∥∂St
∂t

∥∥∥ in R2.

For bounding the vertical part, recall that the vertical direction has the interpretation of measuring
twice the area that is bounded by the projection of the path in coordinates onto R2 and radial line
segments from its start- and endpoint to the origin. The projection of S̃t in coordinates onto its
first two coordinates is obviously St. With this picture in mind, it is easy to see that

∥v(t, θ)∥ = 2 ∂
∂t

Area(DSt|[0,θ]) ≤ 2 ∂
∂t

Area(DSt|[0,2π]) = 4πt.

We omitted the absolute value because in the way that we arranged these curves, the area increases
as t increases. It follows that∥∥∥∥∂Γ

∂t

∥∥∥∥ ≤ ∥h(t, θ)∥ + ∥v(t, θ)∥ ≤ 4πt+ 2.

We therefore obtain the following estimate for the area of the homotopy, writing X = [0, T ]×[0, 2π],

Area(Γ(X)) ≤
∫
X
dtdθ

∥∥∥∥∂Γ
∂t

∥∥∥∥ ∥∥∥∥∂Γ
∂θ

∥∥∥∥
≤
∫ T

0
dt(4πt+ 2)t

∫ 2π

0
dθ

= 8π2

3 T 3 + 2πT 2

= 8
√
π

3 L3/2 + 2L.
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4.2 The case of HHn+1

In the final section of this thesis, we prove a generalisation of Proposition 4.3 to the quaternionic
case for paths that are line segments. We show that this problem can be solved using a modification
of the prior results.

The group under consideration in this section is HHn+1. As for the complex case, we establish the
setup first by choosing coordinates and expressing the horizontal and vertical subspaces in terms
of these coordinates explicitly. While much remains very similar, there are now three vertical
directions.

For choosing coordinates on HHn+1 we proceed as in the previous section. Recall from Proposi-
tion 3.10 that the exponential map is a diffeomorphism. We can therefore choose a basis of the
Lie algebra and define the coordinates on HHn+1 through this basis, where the exponential map
provides the necessary unique correspondence of elements of HHn+1 to the Lie algebra elements.
For b ∈ Hn and s ∈ Im H, let Pb and Ms be defined as above. There are 4n+ 3 real basis vectors
in the Lie algebra n. We choose the following basis vectors,

Ul = Pel
,

Vl = Piel
,

Xl = Pjel
,

Yl = Pkel
,

Zi = Mi,

Zj = Mj ,

Zk = Mk,

where el denotes the lth standard basis vector in Rn. The nonvanishing brackets are

[Ul, Vl] = −2Zi, for all l = 1, . . . , n,

[Xl, Yl] = −2Zi, for all l = 1, . . . , n,

[Ul, Xl] = −2Zj , for all l = 1, . . . , n,

[Yl, Vl] = −2Zj , for all l = 1, . . . , n,

[Ul, Yl] = −2Zk, for all l = 1, . . . , n,

[Vl, Xl] = −2Zk, for all l = 1, . . . , n.

Since we have a basis of the Lie algebra of HHn+1 that identifies its elements with elements of
Hn×Im H, which again is identified with R4n+3, we can choose the following coordinates on HHn+1,

φ : HHn+1 → R4n+3

exp(P(ul+ivl+jxl+kyl)n
l=1

+M(izi+jzj+kzk)) 7→ (u1, v1, x1, y1, · · · , un, vn, xn, yn, zi, zj , zk),
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with parameterisation

ψ : R4n+3 → HHn+1

(u1, v1, x1, y1, · · · , un, vn, xn, yn, zi, zj , zk) 7→ exp(P(ul+ivl+jxl+kyl)n
l=1

+M(izi+jzj+kzk)).

Due to the definition of the coordinates through the exponential map, we call these the exponential
coordinates on HHn+1.

A metric can again be declared by using the trace form as an inner product on TeHHn+1 and
translating it to other points by left-multiplication. The basis vectors are orthogonal with respect
to this inner product, and rescaling makes them orthonormal. We take the rescaled inner product
to be ge, and this can be translated to other points p by left multiplication Lp, so that gp = L∗

pge.

Again, the choice of metric is not canonical and there are many different left-invariant metrics that
we could have chosen instead, but for the previously outlined reasons, statements about lengths
and areas given by a different metric would differ by at most some uniformly bounded amount,
which could result in different prefactors in the statement of Proposition 4.4, but the same power
laws in L.

We identify the horizontal and vertical subspaces next. Following Theorem 3.16, the horizontal
subspace He ⊂ TeHHn+1 is given by gα, which is

spanR{U1, · · · , Un, V1, · · · , Vn, X1, · · · , Xn, Y1, · · · , Yn},

and this can be translated to other points p ∈ HHn+1 with left-multiplication,

Hp = deLpHe = spanR{deLpU1, · · · , deLpV1, · · · , deLpX1, · · · , deLpY1, · · · , deLpYn}.

The vertical subspace at the point p ∈ HHn+1 is the orthogonal complement Vp = H⊥
p , that is,

Vp = spanR{deLpZi, deLpZj , deLpZk} for all p ∈ HHn+1.

Note that the vertical subspaces are three-dimensional now.

As in the complex case, it is sufficient to focus on HH2 from now on. In terms of our exponential
coordinates, left multiplication becomes

(φ ◦ Lψ(u,v,x,y,zi,zj ,zk) ◦ ψ)(a, b, c, d, e, f, g) =



u+ a

v + b

x+ c

y + d

zi + e+ (ub− va) + (xd− yc)
zj + f + (uc− xa) + (vd− by)
zk + g + (ud− ya) + (vc− bx)


,
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with differential

dφ(e)(φ ◦ Lψ(u,v,x,y,zi,zj ,zk) ◦ ψ) =


I4 0

−v u −y x

−x −y u v

−y −x v u

I3

 .

The horizontal subspaces can be described as the intersection of the kernels of three 1-forms,
one for each vertical direction. We denote these ξ(i), ξ(j), ξ(k), with the superscripts indicating the
direction, and write them as a vector-valued differential form ξ, where

ξp =


ξ

(i)
p

ξ
(j)
p

ξ
(k)
p

 .

We set ξ = φ∗η, with

η(v,w,x,y,zi,zj ,zk) =


η

(i)
(v,w,x,y,zi,zj ,zk)

η
(j)
(v,w,x,y,zi,zj ,zk)

η
(k)
(v,w,x,y,zi,zj ,zk)

 =


dzi − udv + vdu− xdy + ydx

dzj − udx+ xdu− vdy + ydv

dzk − udy + ydu− vdx+ xdv

 ,

so that the horizontal subspaces are

Hp = ker ξp.

A curve β : I → CH2 is horizontal if and only if β′(t) ∈ ker ξβ(t) for all t ∈ I.

Like in the case of CH2, the representation of the horizontal subspaces as kernels of the 1-form ξ

yields a geometric interpretation for the z-coordinates of a horizontal curve in HH2. However, this
is more complicated and its discussion is deferred until it is required in the proof of Proposition 4.4.

Horizontal lifts α̃ of a curve α : I → R4 are, as in the complex case, defined by the condition that

π(α̃) = α,

where π : HH2 → R4, ψ(u, v, x, y, zi, zj , zk) 7→ (u, v, x, y). Lemma 4.2 can be generalised to prove
the existence of such horizontal lifts, with the only difference that we now need to specify three
initial conditions, one for each vertical directions, to obtain uniqueness of the horizontal lifts. If we
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write the horizontal curve α̃ with π(α̃) = α as

φ(α̃(t)) =



α̃u(t)
α̃v(t)
α̃x(t)
α̃y(t)
α̃zj (t)
α̃zj (t)
α̃zk

(t)


,

then the condition α̃′(t) ∈ ker ξα̃(t) is equivalent to the system of equations

α̃zi(t) = α̃u(t)α̃′
v(t) − α̃v(t)α̃′

u(t) + α̃x(t)α̃′
y(t) − α̃y(t)α̃′

x(t),

α̃zj (t) = α̃u(t)α̃′
x(t) − α̃x(t)α̃′

u(t) + α̃v(t)α̃′
y(t) − α̃y(t)α̃′

v(t),

α̃zk
(t) = α̃u(t)α̃′

y(t) − α̃y(t)α̃′
u(t) + α̃v(t)α̃′

x(t) − α̃x(t)α̃′
v(t).

Obviously, we have (α̃u(t), α̃v(t), α̃x(t), α̃y(t)) = (αu(t), αv(t), αx(t), αy(t)), and the other compo-
nents (α̃zi , α̃zj , α̃zk

) are given by


α̃zi(t) − α̃zi(t0)
α̃zj (t) − α̃zj (t0)
α̃zk

(t) − α̃zk
(t0)

 =


∫ t
t0
αu(s)α′

v(s) − αv(s)α′
u(s) + αx(s)α′

y(s) − αy(s)α′
x(s)ds∫ t

t0
αu(s)α′

x(s) − αx(s)α′
u(s) + αv(s)α′

y(s) − αy(s)α′
v(s)ds∫ t

t0
αu(s)α′

y(s) − αy(s)α′
u(s) + αv(s)α′

x(s) − αx(s)α′
v(s)ds

 . (4.3)

With these preliminary considerations, we can prove the following proposition that generalises
Proposition 4.3 for special vertical paths.

Proposition 4.4. Any regular vertical path following a line segment in HHn+1 of length L is
homotopic to a horizontal path of length

√
2πL by a homotopy of area at most 2L+ 8

√
π
3L

3/2.

Proof. As in the proof of Proposition 4.3, it is sufficient to find the homotopy for the case that n = 1
only, because this allows us to obtain a suitable homotopy (with the same area) by setting all other
coordinates of the horizontal path to zero. Any vertical path γ : I → HH2 must satisfy

γ′(t) ∈ Vγ(t),

which implies that in coordinates, it has the form

φ(γ(t)) =
(

v0

γz(t)

)
, with γz(t) =


γzi(t)
γzj (t)
γzk

(t)

 ,
where v0 ∈ R4 is constant. We may assume v0 = 0, otherwise we shift our coordinate system
accordingly. We require that the remaining vertical components γz(t) describe a regular path along
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a line segment, which implies that, up to reparameterisation, we can write γz(t) as

γz(t) = 2πt2


ri

rj

rk

 ,
where r := (ri, rj , rk) ∈ R3 is constant and can be chosen such that ∥r∥ = 1, where ∥·∥ denotes the
Euclidean norm on R3.

As in the proof of Proposition 4.3, our goal is to find a family of paths {St}t in R4 that can be
lifted to a family of horizontal paths {S̃t}t in HH2 such that γ(t) = S̃t(2π) yields a vertical path
following a line segment.

We denote the paths as St(θ) = αt(θ), where αt = (αu, αv, αx, αy)t with the subscript indicating
the correspondence to St. To enhance readability, we often place the subscript t outside the
brackets; this should be understood as assigning a subscript t to each component. This notation
is employed because the coordinate functions will generally vary for different paths St and their
horizontal lifts S̃t. The horizontal lift S̃t must satisfy

φ(S̃t(θ)) =


α(θ)
α̃zi(θ)
α̃zj (θ)
α̃zk

(θ)


t

,

where (α̃zi , α̃zj , α̃zk
)t is determined by the condition that ∂

∂θ (S̃t(θ)) ∈ ker ξS̃t(θ). We may set αy,t = 0
for all paths αt in R4. This simplifies the differential equation determining (α̃zi , α̃zj , α̃zk

)t that needs
to be solved, which becomes

α̃′
zi

(θ)
α̃′
zj

(θ)
α̃′
zk

(θ)


t

=


α′
v(θ)αu(θ) − α′

u(θ)αv(θ)
α′
x(θ)αu(θ) − α′

u(θ)αx(θ)
α′
x(θ)αv(θ) − α′

v(θ)αx(θ)


t

.

We rewrite this equation using the cross product in R3,
α̃′
zi

(θ)
−α̃′

zj
(θ)

α̃′
zk

(θ)


t

=


α′
x(θ)
α′
v(θ)

α′
u(θ)


t

×


αx(θ)
αv(θ)
αu(θ)


t

. (4.4)

Observe the negative sign in the second entry and the reversed order of the components of α in the
vectors on the right side of the equation, which become evident upon expanding the cross product.

Similar to the complex case, we aim to find a path αt yielding the solution (α̃zi , α̃zj , α̃zk
)t of the
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differential equation such that the following conditions are fulfilled:
α̃zi(2π)
α̃zj (2π)
α̃zk

(2π)


t

= γz(t) = 2πt2


ri

rj

rk

 and αt(2π) = 0,

because then, we have S̃t(2π) = γ(t).
When r = (r1, r2, r3) = (1, 0, 0), only one nontrivial differential equation remains, which, omitting

the subscript t, takes the form α̃′
zi

(θ) = α′
v(θ)αu(θ)−α′

u(θ)αv(θ). From the proof of Proposition 4.3,
we know there exist functions (αu, αv)t such that, after specifying boundary conditions by requiring
that the path S̃t traverses the origin at time t = 0, the left side of the differential equation
integrates to (α̃zi , α̃zj , α̃zk

)t with α̃zi,t(2π) = 2πt2 and α̃zj ,t(2π) = α̃zk,t(2π) = 0, and we have
(αu(2π), αv(2π))t = (0, 0). By setting αx,t to zero, we therefore define a path St, given by

St(θ) =


−t
0
0
0

+ t


cos θ
sin θ

0
0

 ,

such that its horizontal lift S̃t, when requiring that it passes through the origin at t = 0, is

φ(S̃t(θ)) =



t cos θ − t

t sin θ
0
0

t2(θ − sin θ)
0
0


,

Hence S̃t(2π) is a vertical path in the direction of the line segment (1, 0, 0).
Now we consider the general case of a regular vertical path γ : I → HH2 following a vertical line

segment r = (r1, r2, r3) with ∥r∥ = 1 which is, up to reparameterisation, given by

φ(γ(t)) = 2πt2



0
0
0
0
r1

r2

r3


.

We choose a rotation R ∈ SO(3) such that R(1, 0, 0) = (r1,−r2, r3). The key observation that lets
us use the solution for the special case r = (1, 0, 0) to solve the problem for general r is that the
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differential equation behaves under rotations R in SO(3) as follows,

R



α′
x(θ)
α′
v(θ)

α′
u(θ)

×


αx(θ)
αv(θ)
αu(θ)


 = R


α′
x(θ)
α′
v(θ)

α′
u(θ)

×R


αx(θ)
αv(θ)
αu(θ)

 ,
because due to the fact that R does not depend on θ, it is (R(αx, αv, αu)T)′ = R(α′

x, α
′
v, α

′
u)T. This

observation implies that once we have a solution (αx, αv, αu)T for one particular r of our problem,
we can use a rotation R in SO(3) to obtain a solution R(αx, αv, αu)T for a different r, because

R


α̃′
zi

(θ)
−α̃′

zj
(θ)

α̃′
zk

(θ)

 = R



α′
x(θ)
α′
v(θ)

α′
u(θ)

×


αx(θ)
αv(θ)
αu(θ)


 = R


α′
x(θ)
α′
v(θ)

α′
u(θ)

×R


αx(θ)
αv(θ)
αu(θ)

 .
In general, the determinant of R appears as a prefactor on one side of the equation, but we may
leave this out because we assumed R ∈ SO(3).

The transformation of αt is not exactly a rotation by R, because we inverted the order of the
entries in the vectors on the right side of the equation. Instead, we describe the transformation
of αt by

R4 =
(R 0

0 1

)
∈ O(4),

where R is defined by (R(a1, a2, a3))l = (R(a3, a2, a1))4−l for l = 1, 2, 3. More simply put, R is the
matrix that we obtain from inverting the order of the columns of R. Then, we have

(R4α)x(θ)
(R4α)v(θ)
(R4α)u(θ)

 = R


αx(θ)
αv(θ)
αu(θ)

 ,
and an analogous expression for α′

t, which is precisely how the vectors on the right side of the
differential equation (4.4) transform. Note that exchanging the first and third rows of R in the
definition of R leads to the determinant of R and hence R4 being negative.

That implies that, if (αu, αv, αx)t and the corresponding solution of (4.4), which is (α̃zi , α̃zj , α̃zk
)t,

satisfy the conditions above for r = (1, 0, 0), that is,
α̃zi(2π)
α̃zj (2π)
α̃zk

(2π)


t

= 2πt2


1
0
0

 and αt(2π) = 0,

then the transformed path (R4α)t and the corresponding solution of the differential equation (4.4)
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which we denote by (R̃4αzi
, R̃4αzj

, R̃4αzk
)t satisfy, after choosing suitable boundary conditions,


R̃4αzi

(2π)
R̃4αzj

(2π)
R̃4αzk

(2π)


t

= R


α̃zi(2π)
α̃zj (2π)
α̃zk

(2π)


t

= R


2πt2

0
0

 = 2πt2


ri

rj

rk

 and (R4α)t(2π) = 0.

The last equation follows from the linearity of R4. The path R4St thus lifts to the following
horizontal path in HH2 when requiring that it passes through at the origin at time t = 0,

φ(R̃4St(θ)) =



R

t cos θ − t

t sin θ
0


0

R


t2(θ − sin θ)

0
0




=



R

t cos θ − t

t sin θ
0


0

t2(θ − sin θ)


r1

r2

r3




.

It follows that R̃4St(2π) = γ(t). If we choose the domain to be I = [0,
√
L/(2π)], the vertical

path γ(t) has length L. Let therefore T =
√
L/(2π) and define the homotopy

Γ: [0, T ] × [0, 2π] → R

(t, θ) 7→ R̃4St(θ).

Given that Γ(t, 2π) = γ(t) and Γ(T, θ) = R̃4ST (θ), it follows that the vertical path γ is homotopic
to the horizontal path R̃4ST .
To determine the length of S̃T , we observe that on the horizontal subspaces in coordinates, the

metric is simply the Euclidean metric. Hence the length of horizontal paths coincides with the
Euclidean length of their projections into R4. Since R4 leaves lengths in R4 invariant, it follows
that

Length(R̃4ST ) = Length(S̃T ) = 2πT =
√

2πL.

Bounding the area of the homotopy Γ is therefore all that remains to do to finish the proof. First
we determine∥∥∥∥∂Γ

∂θ

∥∥∥∥ =
∥∥∥∥∥∂R̃4St

∂θ

∥∥∥∥∥ =
∥∥∥∥∂R4St

∂θ

∥∥∥∥ =
∥∥∥∥∂St∂θ

∥∥∥∥ = t.

The second equality follows because S̃t and therefore ∂S̃t
∂θ is horizontal, and the third equality follows

because R4 ∈ O(4) is independent of θ and preserves the Euclidean metric.
The other partial derivative has a horizontal and a vertical part, so that we write

∂Γ
∂t

= h(t, θ) + v(t, θ),
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where h is horizontal and v vertical. Using that the norm of the horizontal part coincides with the
norm induced by the Euclidean metric of the projection of the horizontal part into R4, we see that

∥h(t, θ)∥ =
∥∥∥∥∥∂R̃4St

∂t

∥∥∥∥∥ =
∥∥∥∥∂R4St

∂t

∥∥∥∥ =
∥∥∥∥∂St∂t

∥∥∥∥ ≤ 2.

The inequality follows from the analogous result for the complex case.
For bounding the vertical part, we can, in an analogy to the complex case, give the zi, zj , zk-

coordinates of a horizontal path the interpretations of measuring certain areas that are bounded
by the projection of the path into planes inside the (u, v, x, y)-subspace (after potentially adding
radial line segments to make it a closed path in each of these planes separately). More precisely,
we could say that:

• The zi-coordinate measures twice the sum of the areas in the (u, v)-plane and in the (x, y)-plane,

• The zj-coordinate measures twice the sum of the areas in the (u, x)-plane and in the (v, y)-plane,

• The zk-coordinate measures twice the sum of the areas in the (u, y)-plane and in the (v, x)-plane.

Our paths R̃4St are constant in the y-direction, hence there is no contribution from planes that
contain the y-direction.
Since the projection of these paths in the (u, v, x)-subspace is a rotation of the circle that St

describes in the (u, v)-plane, the areas in each of the (u, v), (u, x), (v, x)-planes is bounded by the
area of that circle, which is given by πt2.
With this picture in mind, it is easy to see that

∥v(t, θ)∥ ≤ 2
√

3
∣∣∣∣ ∂∂tArea(DSt|[0,θ])

∣∣∣∣ ≤ 2
√

3
∣∣∣∣ ∂∂tArea(DSt|[0,2π])

∣∣∣∣ = 4
√

3πt.

It follows that∥∥∥∥∂Γ
∂t

∥∥∥∥ ≤ ∥h(t, θ)∥ + ∥v(t, θ)∥ ≤ 4
√

3πt+ 2.

We therefore find the following estimate for the area of the homotopy, writing X = [0, T ] × [0, 2π],

Area(Γ(X)) ≤
∫
X
dtdθ

∥∥∥∥∂Γ
∂t

∥∥∥∥ ∥∥∥∥∂Γ
∂θ

∥∥∥∥
≤
∫ T

0
dt(4

√
3πt+ 2)t

∫ 2π

0
dθ

= 8π2
√

3
T 3 + 2πT 2

= 8
√
π

3L
3/2 + 2L.
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Appendix

A A model for the tangent spaces

We show a construction that models the hyperbolic spaces KHn as subspaces of Kn+1, where we
identify Kn+1 as a Riemannian manifold with RdimR K(n+1) in the obvious way. Our construction
shows that T[x]KHn can be modelled by x⊥ for any representative x of [x], and that, in this model,
the metric on T[x]KHn may be taken to be the real part of the restriction of ⟨· | ·⟩ to x⊥ divided
by |⟨x |x⟩|. Moreover, we show a way to transform tangent vectors expressed in one model into
another model and derive the Levi-Civita connection. We present the part of the construction
involving computations in coordinates only for the quaternions, the other cases follow by setting
for all quaternions a+ ib+ jc+ kd the parts c, d (if K = C) respectively b, c, d (if K = R) to zero.
We start by constructing a regular submanifold of RdimR K(n+1) of which we then take a quotient

and show that we can map it diffeomorphically onto KHn. We only show this for the quaternions
explicitly. To this end, we choose coordinates

ψ : Hn+1 → R4(n+1)

(a1 + ib1 + jc1 + kd1, · · · , an+1 + ibn+1 + jcn+1 + kdn+1)

7→ (a1, b1, c1, d1, · · · , an+1, bn+1, cn+1, dn+1).

and define the maps

F : Kn+1 → R, x 7→ ⟨x |x⟩,

and

F̃ : R4(n+1) → R, x 7→ (F ◦ ψ−1)(x) = ⟨ψ−1(x) |ψ−1(x)⟩,

where ⟨· | ·⟩ is given by Definition 2.2, that is, for (a1, b1, c1, d1, · · · , an+1, bn+1, cn+1, dn+1) (where
(a1, b1, c1, d1) corresponds to the quaternion a1 + ib1 + jc1 + kd1), we evaluate F̃ as

F̃ (a1, b1, c1, d1, · · · ,an+1, bn+1, cn+1, dn+1)

=
n∑
i=2

(
a2
i + b2

i + c2
i + d2

i

)
− 2 (a1an+1 + b1bn+1 + c1cn+1 + d1dn+1) .

In the following, we use F to emphasise relations in Hn+1 and F̃ for computations in real coordi-
nates.
Lemma 2.3 guarantees that F and F̃ are well-defined in the sense that their image is contained

in the real numbers, this is also clear from the above derived expression. It is easy to read off the
differential of F̃ ,

d(a1,··· ,dn+1)F̃ = (−2an+1,−2bn+1,−2cn+1,−2dn+1, 2a2, · · · , 2dn,−2a1,−2b1,−2c1,−2d1).
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For all (a1, · · · , dn+1) ∈ F̃−1(−1), the differential of F̃ is surjective because F̃ (0) = 0, hence 0 is
not contained in F̃−1(−1). It follows that F̃−1(−1) is a regular submanifold of R4(n+1).

We claim that at each point (a1, · · · , dn+1) ∈ F̃−1(−1), it holds that

ker d(a1,··· ,dn+1)F̃ = (a1, · · · , dn+1)⊥, (A.1)

where y ∈ x⊥ whenever ⟨ψ−1(x) |ψ−1(y)⟩ = 0. A simple calculation shows that, in fact, we have
(a′

1, · · · , d′
n+1) ∈ (a1, · · · , dn+1)⊥, if and only if

n∑
i=2

(ai − ibi − jci − kdi)(a′
i + ib′

i + jc′
i + kd′

i) = 2
(
a1a

′
n+1 + b1b

′
n+1 + c1c

′
n+1 + d1d

′
n+1

)
.

Note that the right-hand side of the equation is real, therefore it is without further calculations
obvious that the imaginary part of the left-hand side must also vanish. We simplify the equation
to see that (a′

1, d
′
n+1) ∈ (a1, · · · , dn+1)⊥ if and only if

n∑
i=2

(aia′
i + bib

′
i + cic

′
i + did

′
i) − 2

(
a1a

′
n+1 + b1b

′
n+1 + c1c

′
n+1 + d1d

′
n+1

)
= 0.

It follows that the left-hand side of the equation is

d(a1,··· ,dn+1)F̃ (a′
1, · · · , d′

n+1)T =
n∑
i=2

(aia′
i+bib′

i+cic′
i+did′

i)−2
(
a1a

′
n+1 + b1b

′
n+1 + c1c

′
n+1 + d1d

′
n+1

)
,

which proves (A.1).

From now on, we assume K ∈ {R,C,H} again, where we treat F and F̃ as placeholders for the
maps defined above as well as their analogues for the real and complex case.

Obviously, the canonical projection π : Kn+1 → KPn maps the set F−1(−1) to KHn because if
x ∈ F−1(−1), then ⟨x |x⟩ = −1 is negative. The restriction π|F−1(−1) as a map onto KHn is
surjective, because given some [x] ∈ KHn, we can set x̃ = x√

|⟨x|x⟩|
, which is a preimage of [x]

under π because we have ⟨x̃ | x̃⟩ = −1 and [x̃] = [x]. However, it is easy to see that the projection
is not injective, because it holds that [x] = [xλ] for all λ ∈ K \ {0}, and if |λ| = 1, then x and xλ

are (distinct) preimages of [x] under π in F−1(−1).

To obtain a diffeomorphism, we need to circumvent the non-uniqueness in choosing a preimage
under π. We therefore introduce the set S = {λ ∈ K : |λ| = 1} and pass to the quotient

M := F−1(−1)⧸S.

By πS we denote the canonical projection

πS : F−1(−1) → F−1(−1)⧸S.
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In the next step, we construct a right inverse for it. Let x ∈ F−1(−1). Define

τx : M → F−1(−1), [y] 7→ y⟨x | y⟩−1 |⟨x | y⟩|√
|⟨y | y⟩|

.

Note that the meaning of our brackets has changed now because [y] is an element ofM and not KHn.
In the following, it will always be clear from the context which bracket is used.

We need to prove that the map τx is well-defined. From Lemma 2.5 we know that |⟨x | y⟩|2 ≥
⟨x |x⟩⟨y | y⟩ = 1. This implies ⟨x | y⟩ ≠ 0. Clearly, ⟨τx([y]) | τx([y])⟩ = −1. Moreover, consider two
representatives y and ỹ = yα for some α ∈ S with |α| = 1. Then

τx([y]) = ỹ⟨x | ỹ⟩−1 |⟨x | ỹ⟩|√
|⟨ỹ | ỹ⟩|

= yα(⟨x | y⟩α)−1 |⟨x | y⟩| |α|√
|⟨y | y⟩| |α|2

= yαα−1⟨x | y⟩−1 |⟨x | y⟩|√
|⟨y | y⟩|

= y⟨x | y⟩−1 |⟨x | y⟩|√
|⟨y | y⟩|

,

so that the mapping rule is independent of the representative that was chosen. It follows that
d[y]τx : T[y]M → Tτx([y])F

−1(−1) is a right inverse of dτx([y])πS .

We define a metric on M as follows. Let y ∈ M and x ∈ π−1
S (y). Let v, w ∈ T[y]M , denote

by geucl. the Riemannian metric on F̃−1(−1) (which is just the restriction of the standard Euclidean
metric on RdimR K(n+1) to F̃−1(−1) because F̃−1(−1) is an embedded submanifold) and we define
g̃ = ψ∗geucl.. We set

gy(v, w) = g̃τx([y])(d[y]τxv, d[y]τxw). (A.2)

We need to show that this definition does not depend on the choice of x. To do so, let x, x′ ∈ π−1
S (y).

Then there is some λ ∈ S such that x′ = xλ = Rλ(x), where Rλ denotes the right-multiplication.

It is easy to see that πS(x) = πS(x′) = πS(Rλ(x)) and hence

dxπS = dxλπS · dxRλ.

so that, since dxRλ is invertible, if d[y]τx is a right inverse of dτx([y])πS , then dτx([y])Rλd[y]τx is a
right inverse of dxλπS .

Considering that for λ ∈ S it holds that λ̄λ = 1, hence λ̄ = λ−1, we see that

Rλτx([y]) = N y⟨x | y⟩−1λ

= N y(λ−1⟨x | y⟩)−1

= N y(⟨xλ | y⟩)−1 = τxλ([y]).

Note that the normalisation factor N = |⟨x|y⟩|√
|⟨y|y⟩|

is invariant under x → xλ when |λ| = 1.
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This yields

g̃τxλ([y])(d[y]τxλv, d[y]τxλw) = g̃Rλτx([y])(dxRλd[y]τxv, dxRλd[y]τxw)

= (Rλ−1)∗g̃τx([y])(d[y]τxv, d[y]τxw),

and since dxRλ : x⊥ → (xλ)⊥ is an isometry, the independence of the chosen preimage follows.
Nondegeneracy is clear because as a right inverse of πS , the map τx must be injective. The
remaining properties are also inherited from the metric g̃.
We conclude that there is a diffeomorphism between the Riemannian manifolds

F−1(−1)⧸S
∼= KHn,

and that for any [y] in F−1(−1)⧸S, a metric can be obtained using the standard metric inherited
from Kn+1 (i.e. the restriction of the quadratic form ⟨· | ·⟩ to x⊥ for any x ∈ π−1

S ). Hence x⊥ with
metric gx = ⟨· | ·⟩|x⊥ is a model for the tangent space T[x]KHn.
The fact that models of KHn constructed with different immersions τx and τxλ are related by

right multiplication Rλ explains why in our models of the tangent space in Definition 2.6, a tangent
vector U ∈ T[y]KHn that is represented by u ∈ y⊥ must be represented by uλ ∈ (yλ)⊥ when
changing the model.
If we want to obtain a model using a representative y of [y] with ⟨y | y⟩ not necessarily equal to −1,

we may use right multiplication by
√

|⟨y | y⟩| to obtain from the above-constructed model a model
where we identify T[y]KHn with y⊥ by choosing some x ∈ π−1

S (y) and equipping T[y]KHn with the
inner product

g[y] =
(
R√

|⟨y|y⟩|
−1

)∗
g̃τx([y]).

The metric thus differs from the one determined above by a prefactor of 1
|⟨y|y⟩| . It follows that

statements involving the metric become independent of the choice of representative y of [y] ∈ KHn

when, simultaneously with exchanging y by y√
|⟨y|y⟩|

, we also replace the model u ∈ y⊥ of the tangent
vector U ∈ T[y]KHn by u√

|⟨y|y⟩|
.

Proposition A.1. For all x ∈ S, the Levi-Civita connection ∇ on τx(KHn) is given by the tangen-
tial projection of the standard connection D on Kn+1 (which is easily obtained from the standard
connection on RdimR K(n+1)). More precisely, if X and Y are smooth vector fields on τx(KHn) and
if X̃ and Ỹ are smooth extensions of X and Y on Kn+1, and we denote M = τx(KHn), then the
Levi-Civita connection ∇ on M is defined by

∇XY = projTMDX̃ Ỹ |M . (A.3)

Proof. First we note that (A.3) is a well-defined connection (e.g. pp. 124 in [Lee18]). To prove
that ∇ is in fact the Levi-Civita connection, we need to show that ∇ is symmetric and compatible
with the metric on τx(KHn). Proving these two properties is easy once we know that τx is an
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isometric immersion, i.e. τ∗
x g̃ = g. This, however, follows immediately from the definition of the

metric in (A.2).
We confirm metric compatibility first. Let X and Y be smooth vector fields on M and X̃ and Ỹ

be smooth extensions of X and Y on Kn+1. Then on M it holds that

∇Xg(Y, Z) = DX̃ g̃(Ỹ , Z̃)

= g̃(DX̃ Ỹ , Z̃) + g̃(Ỹ , DX̃ Z̃)

= g̃(projTM
(
DX̃ Ỹ

)
, Z̃) + g̃(Ỹ , projTM

(
DX̃ Z̃

)
)

= g(∇XY,Z) + g(Y,∇XZ),

where the second equality follows from the metric compatibility of D and the third from the fact
that Ỹ and Z̃ are tangent to M . Hence ∇ is compatible with the metric g.
To prove that ∇ is also symmetric, we first note that the naturality of Lie brackets implies

that [X̃, Ỹ ] is tangent to M because the inclusion of [X,Y ] into Kn+1 is simply given by the
Lie bracket of the inclusions of X and Y which is clearly tangent to M . Therefore, on M , we see
that

∇XY − ∇YX = projTM
(
DX̃ Ỹ |M −DỸ X̃|M

)
= projTM

(
[X̃, Ỹ ]|M

)
= [X̃, Ỹ ]|M
= [X,Y ],

where the second equality follows from the symmetry of D and the third from the fact that [X̃, Ỹ ]
is tangent to M . Hence ∇ is symmetric and therefore the Levi-Civita connection on τx(KHn).

Remark. Note that for K = R, the set S contains only two elements, S = {±1}. The whole
construction of an immersion τx of RHn into Rn+1 can therefore be viewed as choosing one out of
two copies of the hyperbolic space in Rn+1. Given such a choice, we obtain immediately a metric
on RHn and tangent spaces that are subsets of Rn+1 without having to write down the immersion
explicitly, and in fact, this is precisely the well-known hyperboloid model of RHn.
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B Construction of an orthonormal basis for quaternionic vector spaces

The proof of Proposition B.2 is a standard proof using the tools of linear algebra. However, due to
the non-commutativity of the multiplication, the set of quaternions is not a field, so that Hn+1 is
not a vector space over a field and it is not obvious that the same tools can be applied. The set of
quaternions is a division ring, which allows for the definition of (right) modules that have many of
the properties of vector spaces over fields. We therefore call them (right) vector spaces and state
the properties that are relevant for the following proofs. It is true that every such vector space has
a basis of well-defined cardinality (its dimension) and every linearly independent set is contained in
a basis. Furthermore, maximal linear independent set is a basis, and each spanning set contains a
basis (pp. 180 in [Hun74]). The following proofs use these facts. Many results that are well-known
for vector spaces over fields carry over to vector spaces over division rings, such as the following.

Lemma B.1. [Hun74, Corollary 2.15 in Chapter IV] Let V,W be subspaces of a vector space over
a division ring of finite dimension. Then

dimV + dimW = dim(V ∩W ) + dim(V +W ).

Our goal is to prove the following proposition.

Proposition B.2. Let ⟨· | ·⟩ be the as in Definition 2.2, and let v1 ∈ Kn,1 such that ⟨v1 | v1⟩ < 0.
Then the restriction of ⟨· | ·⟩ to v⊥ = {w ∈ Kn+1 : ⟨v |w⟩ = 0} is positive definite.

From the definition of ⟨· | ·⟩ it is clear that in the standard basis (e1, · · · , en+1) of Kn+1, the
quadratic form Q is represented by the matrix

K =


−1

In−1

−1

 ,
where In−1 denotes the (n − 1) × (n − 1)-unit matrix. We define a new basis (f1, · · · , fn+1) by
setting

fi =


1√
2(e1 − en+1) for i = 1,

ei for 2 ≤ i ≤ n,

1√
2(e1 + en+1) for i = n+ 1.

A simple calculation shows that in this basis, the quadratic form is represented by the matrix

K ′ =
(
In

−1

)
.

Thus, we know that there exists a basis in which the quadratic form has signature (n, 1). We prove
two lemmas from which Proposition B.2 directly follows.
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Lemma B.3. Let v1 ∈ Kn,1 such that ⟨v1 | v1⟩ < 0 be given. Then there exists an orthogonal basis
(with respect to ⟨· | ·⟩) containing v1.

Proof. Let (v1, · · · , vn+1) be a basis of Kn,1. Suppose that ⟨v1 | v1⟩ < 0. We want to transform this
into an orthogonal basis containing v1.
We modify the well-known Gram-Schmidt algorithm to find such a basis. The problem with the

Gram-Schmidt method here is that, due to the possibility of nullvectors, we cannot always divide by
the norm of a vector. This difficulty can be circumvented by making the vectors with nonzero norm
pairwise orthogonal first using the Gram-Schmidt algorithm, and treating the nullvectors separately.
In the first step, we prove by induction, that the basis (v1, · · · , vn+1) can be transformed into a
basis consisting of two sets N and O, where N contains all nullvectors and O the remaining basis
vectors, and the vectors in O are pairwise orthogonal.
Instead of proving the lemma, we prove the slightly different claim that given some v1 with

⟨v1 | v1⟩ < 0, there exists an orthogonal basis containing a scalar multiple of v1. Then, the replace-
ment of this scalar multiple by v1 clearly yields an orthogonal basis as required in the lemma.
We prove the claim for the case n = 1 first. Set

b1 = v1
1√

|⟨v1 | v1⟩|

and

b2 = v2 + b1⟨b1 | v2⟩.

Then b1 and b2 are still linearly independent because v1 and v2 were so, and they are pairwise
orthogonal because

⟨b1 | b2⟩ = ⟨b1 | v2⟩ + ⟨b1 | b1⟩⟨b1 | v2⟩ = 0.

If ⟨b2 | b2⟩ ̸= 0, then we set O = {b1, b2}, otherwise we set O = {b1} and N = {b2}. In either case,
the claim is proven for n = 1.
We return to considering arbitrary n ∈ N. Let i ≤ n and suppose that b1, · · · , bi are already

pairwise orthogonal or nullvectors. Let O = {bk : ⟨bk | bk⟩ ≠ 0} ⊂ {1, · · · , i}. Then we set

bi+1 = vi+1 −
∑
bk∈O

bk
⟨bk | vi+1⟩
⟨bk | bk⟩

.

For any 1 < j ≤ i with bj ∈ O it holds that

⟨bj | bi+1⟩ = ⟨bj | vi+1⟩ −
∑
bk∈O

⟨bj | bk⟩
⟨bk | vi+1⟩
⟨bk | bk⟩

= ⟨bj | vi+1⟩ − ⟨bj | bj⟩
⟨bj | vi+1⟩
⟨bj | bj⟩

= 0.

The linear independence of the vectors v1, · · · , vi+1 guarantees the linear independence of our
transformed basis. Hence there is always a basis with the properties that it contains v1 and that
the other basis vectors are either pairwise orthogonal or nullvectors. Suppose we have such a basis
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and let O be the set of pairwise orthogonal non-nullvectors. In order to transform this into an
orthogonal basis, we first make the nullvectors orthogonal to all vectors in O and in a second step
we orthogonalise the set of nullvectors.

To make the nullvectors N = {vl : ⟨vl | vl⟩ = 0} orthogonal to O, we set for vl ∈ N

bl = vl −
∑
bk∈O

bk
⟨bk | vl⟩
⟨bk | bk⟩

.

Then for all bj with bj ∈ O, it holds that

⟨bj | bl⟩ = ⟨bj | vl⟩ −
∑
bk∈O

⟨bj | bk⟩
⟨bk | vl⟩
⟨bk | bk⟩

= ⟨bj | vl⟩ − ⟨bj | bj⟩
⟨bk | vl⟩
⟨bl | bl⟩

= 0.

If the resulting vector bl is not a nullvector, we apply the procedure above to make it orthogonal
to O. To achieve that the remaining nullvectors are pairwise orthogonal, we can repeatedly apply
the following. Let bl, bm be nullvectors and suppose that ⟨bl | bm⟩ ≠ 0. For all λ ∈ K we have

⟨bl ± bmλ | bl ∓ bmλ⟩ = 2Im (⟨b1 | b2⟩λ).

If we choose λ = ⟨b2 | b1⟩, then ⟨b1 | b2⟩λ = |⟨b1 | b2⟩|2 is purely real so that the two vectors bl + bmλ

and bl − bmλ are orthogonal. The resulting vectors are certainly still linearly independent, this
yields the desired orthogonal basis.

The previous lemma guarantees the existence of a basis B containing v1 whose basis vectors are
pairwise orthogonal. For the proof of Proposition B.2, it remains to show that the signature is
independent of the chosen basis (a result that is well-known for real and complex vector spaces).
Since we already know the signature of Q in one basis, the proposition then easily follows.

Lemma B.4. Let Q be a quadratic form on a quaternionic vector space. Then there is a basis in
which the quadratic form is represented by the matrix

S =


Ir+

−Ir−

0

 ,
and the the numbers r+ and r− are independent of the particular choice of such a basis.

Proof. Let B = {b1, · · · , bn+1} be an orthogonal basis with respect to the quadratic form. Set

wi =


bi if ⟨bi | bi⟩ = 0,

bi√
|⟨bi|bi⟩|

else.
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In this basis, the quadratic form is, after relabelling the basis vectors, represented by the matrix

S =


Ir+

−Ir−

0

 .
We want to show that the numbers r+ and r− are independent of the basis chosen. Since we

already know a basis in which the quadratic form has signature (n, 1), it will follow that there are
no nullvectors remaining after the above construction.
Since the rank of any matrix is independent of the chosen basis (pp. 187 in [Hun74]), it is sufficient

to prove the claim for r+.
Let V+ = span{vi : ⟨vi | vi⟩ > 0} and define V− and V0 analogously. We set a = max{dimW : W ⊂
V, ⟨w |w⟩ > 0 for all w ∈ W \ {0}}. It is clear that a ≥ r+ because V+ is such a subspace W .
Assume a > r+ and let W be a subspace with the corresponding property and maximal dimension.
Then Lemma B.1 yields

dimW + dimV− + dimV0 > 0,

which implies that

W ∩ (V− + V0) ̸= {0}.

But then, there exists some w ̸= 0 such that ⟨w |w⟩ > 0 and ⟨w |w⟩ ≤ 0, this is a contradiction.
We therefore have a = r+ so that r+, and r− are independent of the basis chosen.

Proof of Proposition B.2. We can use Lemma B.3 to obtain an orthogonal basis containing v1.
From Lemma B.4 we know that the signature of the quadratic form Q is independent of the basis.
Our preliminary considerations show that Q has signature (n, 1), and since ⟨v1 | v1⟩ < 0, it follows
that the restriction of ⟨· | ·⟩ to v⊥

1 is positive definite.
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C The kernel of dôπ

We provide the proof of Lemma 2.33 for the quaternionic case only here, because the real case was
treated above and the proof for the complex case is analogous to the proof below.

Lemma C.1. Let π : Hn+1 → HHn be the canonical projection and ô = (1, 0, · · · , 0, 1). The kernel
of dôπ is the following set,

ker dôπ = {(λ, 0, · · · , 0, λ) : λ ∈ H} = spanH{ô}.

Proof. We first note that for any [(x1, · · · , xn+1)] ∈ HHn it holds that

⟨x |x⟩ =
n∑
i=2

|x1|2 − 2Re (x1xn+1) < 0

and therefore xn+1 ̸= 0, which implies that its inverse x−1
n+1 = xn+1

|xn+1|2 exists. Recall that for the
real case we chose coordinates

φR : RHn → Rn

[(x1, · · · , xn+1)] 7→
(
x1x

−1
n+1, · · · , xnx−1

n+1

)
.

A quaternion can be described with four real coordinates,

(a, b, c, d) 7→ a+ ib+ jc+ kd.

This yields coordinates for Hn+1 by defining

ψ : Hn+1 → R4(n+1)

(a1 + ib1 + jc1 + kd1, · · · , an+1 + ibn+1 + jcn+1 + kdn+1)

7→ (a1, b1, c1, d1, · · · , an+1, bn+1, cn+1, dn+1).

We can modify our coordinates given by φR from the proof of Lemma 2.33 by applying the mapping
rule of φR to quaternions, carefully separating the real and imaginary parts and using an analogue
of ψ defined on Hn to map the result into R4n. This yields coordinates given by

φ : HHn → R4n

[(a1 + ib1 + jc1 + kd1, · · · , an+1 + ibn+1 + jcn+1 + kdn+1)]

7→
(
a1an+1 + b1bn+1 + c1cn+1 + d1dn+1

a2
n+1 + b2

n+1 + c2
n+1 + d2

n+1
,
−a1bn+1 + b1an+1 − c1dn+1 + d1cn+1

a2
n+1 + b2

n+1 + c2
n+1 + d2

n+1
,

−a1cn+1 + c1an+1 − d1bn+1 + b1dn+1
a2
n+1 + b2

n+1 + c2
n+1 + d2

n+1
,
−a1dn+1 + d1an+1 − c1bn+1 + b1cn+1

a2
n+1 + b2

n+1 + c2
n+1 + d2

n+1
,

· · · , −andn+1 + dnan+1 − cnbn+1 + bncn+1
a2
n+1 + b2

n+1 + c2
n+1 + d2

n+1

)
.
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The fact that the definition of φ is independent of the representative is less obvious than in the real
case, but it can be seen without carrying out the computation in coordinates. Consider multiplying
(x1, · · · , xn+1) ∈ Hn+1 by some λ ∈ H \ {0}. Applying the mapping rule of φR to the result yields

(x1λ)(xn+1λ)−1 = x1λ
xn+1λ

|xn+1λ|2
= x1λλ

xn+1

|λ|2 |xn+1|2
= x1 |λ|2 xn+1

|λ|2 |xn+1|2
= x1

xn+1

|xn+1|2
= x1x

−1
n+1,

in the first component and analogous expressions in the other components, so that the definition
of φ is independent of the chosen representative.

In terms of these coordinates, the canonical projection π can be expressed as

φ(π(ψ−1(a1, b1, c1, d1, · · · , an+1, bn+1, cn+1, dn+1))) =(
a1an+1 + b1bn+1 + c1cn+1 + d1dn+1

a2
n+1 + b2

n+1 + c2
n+1 + d2

n+1
,
−a1bn+1 + an+1b1 − c1dn+1 + d1cn+1

a2
n+1 + b2

n+1 + c2
n+1 + d2

n+1
,

−a1cn+1 + c1an+1 − d1bn+1 + b1dn+1
a2
n+1 + b2

n+1 + c2
n+1 + d2

n+1
,
−a1dn+1 + d1an+1 − c1bn+1 + b1cn+1

a2
n+1 + b2

n+1 + c2
n+1 + d2

n+1
,

· · · , −andn+1 + dnan+1 − cnbn+1 + bncn+1
a2
n+1 + b2

n+1 + c2
n+1 + d2

n+1

)
.

The differential of π at any point p = (a1, b1, c1, d1, · · · , dn+1) can now be computed explicitly. We
write the differential as a block matrix,

dp(φ ◦ π ◦ ψ−1) =


B 0 · · · 0 E1

0 B · · · 0 E2
... . . . ...
0 0 · · · B En

 ,

where, writing |xn+1|2 instead of a2
n+1 + b2

n+1 + c2
n+1 + d2

n+1 for better readability, we have

B =



an+1
|xn+1|2

bn+1
|xn+1|2

cn+1
|xn+1|2

dn+1
|xn+1|2

−bn+1
|xn+1|2

an+1
|xn+1|2

−dn+1
|xn+1|2

cn+1
|xn+1|2

−cn+1
|xn+1|2

dn+1
|xn+1|2

an+1
|xn+1|2

−bn+1
|xn+1|2

−dn+1
|xn+1|2

cn+1
|xn+1|2

−bn+1
|xn+1|2

an+1
|xn+1|2

 ,

and, denoting for i = 1 · · · , n the component of φ(π(ψ−1(p))) corresponding to the ai-coordinate
as f(p)ai (and using an analogous notation for bi, ci, di), we set

Ei =



ai−2an+1f(p)ai

|xn+1|2
bi−2bn+1f(p)ai

|xn+1|2
ci−2cn+1f(p)ai

|xn+1|2
di−2dn+1f(p)ai

|xn+1|2
bi−2an+1f(p)bi

|xn+1|2
−ai−2bn+1f(p)bi

|xn+1|2
di−2cn+1f(p)bi

|xn+1|2
−ci−2dn+1f(p)bi

|xn+1|2
ci−2an+1f(p)ci

|xn+1|2
−di−2bn+1f(p)ci

|xn+1|2
−ai−2cn+1f(p)ci

|xn+1|2
bi−2dn+1f(p)ci

|xn+1|2
di−2an+1f(p)di

|xn+1|2
−ci−2bn+1f(p)di

|xn+1|2
bi−2cn+1f(p)di

|xn+1|2
−ai−2dn+1f(p)di

|xn+1|2


.
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The point ô has coordinates

ψ(ô) = (1, 0, 0, 0, 0, · · · , 0, 1, 0, 0, 0).

In that case,

B =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , E1 =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ,

and Ei = 0 for i = 2, · · · , n, so that, writing I4 for the (4 × 4)-unit matrix, the differential of π at ô
becomes

dψ(ô)(φ ◦ π ◦ ψ−1) =


I4 0 · · · 0 −I4

0 I4 · · · 0 0
... . . . ...
0 0 · · · I4 0

 .

We can read off its kernel. Using e1, · · · , e4 to denote the standard basis vectors of R4, we find

ker dψ(ô)(φ ◦ π ◦ ψ−1) = spanR





e1

0
...
0
e1


,



e2

0
...
0
e2


,



e3

0
...
0
e3


,



e4

0
...
0
e4




.

In terms of Hn+1, this corresponds to

ker dôπ = {(λ, 0, · · · , 0, λ) : λ ∈ H} .
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