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Abstract. This thesis explores phase transitions in ferromagnetic systems using Ising-like models.
The study focuses on the approach originally introduced by Lee and Yang in 1952 that relates phase
transitions to the distribution of complex zeros of the partition function, and on their famous circle
theorem which establishes that for certain models, these zeros are found on the unit circle. Lieb
and Sokal extended this theorem to ferromagnets with arbitrary spins. The thesis is divided into
two parts: the first provides a review of important concepts from thermodynamics and statistical
mechanics and summarises the results of Lee and Yang, while the second presents an elaboration
of Lieb and Sokal’s proof of the generalised Lee-Yang theorem. The central idea of the proof for
one-component ferromagnets involves using a differential operator to obtain the partition function
from the partition function without interactions and showing that this operation preserves the
property of complex zeros lying in the positive half-plane. The proof uses properties of complex
polynomials and approximations with polynomials. Through a suitable transformation of variables,
the two-component ferromagnet can be traced back to the one-component case. As a result, the
Lee-Yang theorem for two-component ferromagnets with arbitrary spins can be deduced from the
previously established results for the one-component ferromagnet.

Abstrakt. Diese Arbeit untersucht Phasenübergänge in ferromagnetischen Systemen mithilfe
von Ising-ähnlichen Modellen. Die Untersuchung konzentriert sich auf den Ansatz, der ursprünglich
von Lee und Yang im Jahr 1952 eingeführt wurde, und der Phasenübergänge mit der Verteilung
komplexer Nullstellen der Zustandssumme in Verbindung bringt, sowie auf ihr berühmtes ’Circle-
Theorem’, das besagt, dass für bestimmte Modelle diese Nullstellen auf dem Einheitskreis liegen.
Lieb und Sokal erweiterten dieses Theorem auf Ferromagneten mit beliebigen Spins. Die Arbeit ist
in zwei Teile unterteilt: Der erste bietet eine Übersicht über wichtige Konzepte aus Thermodynamik
und statistischer Mechanik und umfasst die Ergebnisse von Lee und Yang, während der zweite
eine Ausarbeitung von Lieb und Sokals Beweis des verallgemeinerten Lee-Yang-Theorems präsen-
tiert. Die zentrale Idee des Beweises für den einkomponentigen Ferromagneten besteht darin, einen
Differentialoperator zu verwenden, um die Zustandssumme aus der Zustandssumme ohne Wechsel-
wirkungen abzuleiten und zu zeigen, dass diese Operation die Eigenschaft der komplexen Nullstellen
im positiven Halbraum zu liegen erhält. Der Beweis verwendet Eigenschaften komplexer Polynome
und Approximationen mit Polynomen. Durch eine geeignete Variablentransformation kann der
zweikomponentige Ferromagnet auf den einkomponentigen Fall reduziert werden. Dadurch kann
das Lee-Yang-Theorem für zweikomponentige Ferromagneten mit beliebigen Spins aus den zuvor
etablierten Ergebnissen für den einkomponentigen Ferromagneten abgeleitet werden.
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1 Introduction

Phase transitions are intriguing phenomena that manifest in a wide spectrum of physical, chemical,
and biological systems. These range from everyday occurrences such as the boiling of water and
the melting of ice to Nobel prize winning experiments creating Bose-Einstein condensation, from
the dynamics of bacterial populations to climate phenomena [MW19].
Phase transitions of magnetic systems are often modelled by Ising-like models which hold great

significance for several reasons. Firstly, these models are relatively easy to analyse compared to more
complex physical systems. This allows for a deeper understanding of the fundamental principles
underlying phase transitions. Furthermore, Ising-like models serve as models for a wide range
of real-world systems. They find applications in diverse areas such as ferromagnetism, biological
systems and even social dynamics, demonstrating their versatility and relevance across disciplines
[Isi+17; Lip22; Sta08; LB99].
One remarkable feature in the theory of phase transitions is the phenomenon of universality. Uni-

versality refers to the emergence of common behaviour near the critical point of a phase transition,
regardless of the microscopic details of the system. For instance, the Ising model exhibits the same
behaviour near a critical point as some systems that show liquid-vapour transitions. This implies
that, by studying Ising-like models, we can extract valuable information which applies to a broader
class of physical systems [ZJ21].
A major contribution to the study of phase transitions in the Ising model was made by Lee

and Yang in 1952 [LY52a; LY52b]. They demonstrated a fundamental connection between the
occurrence of phase transitions and the distribution of complex zeros of the partition function
in the complex fugacity plane. Moreover, they proved the famous circle theorem. This theorem
establishes that the accumulation points of the complex zeros of the partition function for Ising-like
models, when regarded as a function of the fugacity, lie on the unit circle in the complex plane.
The beauty and simplicity of the circle theorem have attracted attention and inspired a multitude

of subsequent research [FR12; BDL05]. Among these are the works of Newman, who investigated
a Lee-Yang theorem for Ising-like models with general even or odd spin distributions [New74],
and Dunlop, who extended the original Lee-Yang theorem to certain multi-component models,
specifically the Heisenberg and plane rotator models [Dun79]. Building on the ideas of Newman
and Dunlop, Lieb and Sokal managed to prove a similar theorem about the zeros of the partition
function of a one-component ferromagnet with arbitrary spins [LS81]. Their method could even
be extended to yield such a theorem for a two-component ferromagnet. This general Lee-Yang
theorem stated by Lieb and Sokal is the theorem that we investigate in this thesis. The Lieb-Sokal
version of the Lee-Yang theorem treats the partition function as a function of the external magnetic
field and therefore does not show that the zeros are found on the unit circle, but that they are not
found in the right half-plane. For models with a spin-flip symmetry, this can be restated as a circle
theorem by passing to the exponential of the complex magnetic field.
This thesis is divided in two parts. In the first part, we review some concepts from thermodynamics

and statistical mechanics. This will be done for two reasons. Our first aim is to remind the reader
of the fundamental relationship between the partition function and phase transitions. Secondly, we
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develop the concepts and vocabulary to accurately guide us through the further discussion.
The second part of this thesis focuses on stating and, more importantly, proving Lieb and Sokal’s

generalised version of the Lee-Yang theorem, following the proof given by Lieb and Sokal. The
central idea of the proof is to obtain the partition function of the ferromagnet from the partition
function of the model without interparticle interactions through the application of a differential
operator, and to show that the property of a function of having its complex zeros in the right half-
plane is preserved by the application of this differential operator. This is a result that can, with
a manageable effort, be proven for a polynomial function and a polynomial differential operator.
In a series of topological arguments, we show that this property still holds after an approximation
with polynomials in a certain space of entire functions. Proving that the partition function can
be described with these entire functions finishes the proof of the Lee-Yang theorem for the general
one-component ferromagnet. Hence the partition function of a particular model has no zeros in
the right half plane if this is the case for the model without interactions. For the two-component
ferromagnet, a suitable transformation of variables leads back to the one-component ferromagnet
case, which means that a similar Lee-Yang theorem for the two-component ferromagnet can easily
be deduced from the previous results.

2 Phase transitions, Lee-Yang approach and circle theorem

2.1 Phase transitions in thermodynamics

Thermodynamics provides a framework for understanding and predicting the behaviour of macro-
scopic systems. One intriguing aspect of thermodynamics is the study of phase transitions. Phase
transitions are characterised by sudden changes in macroscopic observables, such as pressure or
density. We will link the appearance of phase transitions to singularities in the equations of state.
In this section, we introduce the necessary terminology to motivate and make precise this notion of
a phase transition. This section largely follows Chapters 4.1, 5.1 and 5.2 in [Oli17], the paragraph
about natural variables follows pp. 37 in [Cal85].
A thermodynamic system can be any body of matter or radiation, usually consisting of so many

constituents that a description through many-body dynamics is neither possible nor interesting.
Instead, thermodynamics focuses on the study of certain averaged or macroscopic quantities.
The state of a thermodynamic system is described by several macroscopic quantities. Depend-
ing on the system, these may include its volume V , its temperature T , its particle number N , its
pressure P , its entropy S or its chemical potential µ. A system is in thermodynamic equilibrium if,
without external influences, its state does not change over time. We will only consider equilibrium
systems. The space of all possible thermodynamic states is the space spanned by all possible values
of the macroscopic quantities of a system. Only few of them are independent whereas the others
can be regarded as functions of the independent ones. Such a relation is called equation of state.
There are various thermodynamic potentials that can be used to describe the state of a system.

Each thermodynamic potential comes with a set of natural variables. The natural variables are the
independent variables that are sufficient to determine the value of the thermodynamic potential
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in a given state. When expressed in its natural variables, the thermodynamic potential allows the
derivation of other thermodynamic quantities from it by taking derivatives. This is explained in
more detail below. Usually, one takes some of the above listed quantities as natural variables.
The internal energy U is perhaps the most obvious thermodynamic potential. Its natural variables

are the entropy S, the volume V and the particle number N . Depending on the situation under
consideration, it may however be more convenient to work with other variables. The interdepen-
dence of the thermodynamic variables permits a change of variables through a Legendre transform,
allowing us to obtain the free energy

F (V, T,N) = inf
S

{U(S, V,N) − TS}

from the internal energy U(S, V,N), and likewise other thermodynamic potentials such as the
enthalpy H(S, P,N), the Gibbs free energy G(T, P,N) and the grand potential ΦG(T, V, µ). The
Legendre transform above is always well-defined when U is convex as a function of S and an
analogous statement holds for other the Legendre transforms.
As discussed before, only a few of all imaginable thermodynamic variablesX1, · · · , Xn are sufficient

to uniquely determine the state of a thermodynamic system. Any thermodynamic potential A can
therefore be understood as a function of only those variables A(X1, · · · , Xn). If they are chosen
appropriately, the total differential dA can be written as

dA =
n∑

i=1
YidXi,

and X1, · · · , Xn are called the natural variables of the potential A.
The differential dA is exact, that is, it is the total differential of a function Ψ with the property(

∂Ψ
∂Xi

)
j ̸=i

= Yi, (2.1)

where the notation
(

∂Ψ
∂Xi

)
j ̸=i

means that the variables Xj for j ̸= i are held constant.

The relations (2.1) yield functional dependencies of various thermodynamic variables to others in
terms of derivatives of the thermodynamic potentials with respect to their natural variables. These
are the equations of state.
A system that is completely uniform with regard to its thermodynamic properties constitutes a

thermodynamic phase. The phases are open connected regions in the space of thermodynamic
states, and within that region, the dependence of the thermodynamic variables on others are
smooth. On the other hand, a phase transition occurs whenever there are singularities in the
equations of state.
The study of phase transitions in thermodynamics thus requires the knowledge of a thermody-

namic potential and the investigation of its analytic properties. In the next paragraph, we will
encounter a method to derive the thermodynamic potential from the microscopic composition of a
thermodynamic system.
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2.2 Phase transitions in statistical mechanics

2.2.1 The approach of statistical mechanics

The central idea of statistical mechanics is to derive macroscopic properties and thermodynamic
quantities from the underlying microscopic dynamics by studying the statistical behaviour of en-
sembles of particles. Its importance lies not only in the powerful tools it offers, but also in the
rigorous foundation it lays for thermodynamics. In this section, we review fundamental concepts
of statistical mechanics and how they relate to thermodynamics, in particular to phase transitions.
We restrict the discussion to equilibrium systems.
Equilibrium states correspond to sets of systems in various phase space configurations that are

compatible with certain macroscopic conditions, called ensembles. The ensembles can equivalently
be characterised by probability distributions attributing a probability to each phase space config-
uration. The distributions are parameterised by thermodynamic variables. We will sometimes use
the terms ’ensemble’ and ’distribution’ interchangeably.
As systems in nature obey the laws of quantum mechanics, it would in some situations be more

correct to start with quantum statistical mechanics and the corresponding ensembles and then
obtain classical statistical mechanics as a limit. This approach is in fact possible and it is outlined
for example in Section 1.3.3 in [Rue07]. However, adopting this view would not provide any
conceptual or technical benefit for the purpose of this thesis and we therefore limit the discussion
to classical statistical mechanics.
The systems under consideration contain a very large number of particles. Recall that in one

litre of air at room temperature alone there are N = O(1022) particles and molecules. Not only
would it be impossible to analyse the dynamics of systems of such complexity in detail, it would
also not be fruitful and interesting. In large systems, one is thus interested in collective behaviour
and macroscopic physical quantities instead. Hence, we want to specify certain thermodynamic
parameters and consider all possible microscopic configurations, or microstates, that are compatible
with these. The probability with which the microstates are realised is encoded in the probability
distributions that belong to the respective ensembles.
To an observable physical quantity we associate a function F and to an observation in a system

its expectation value in the corresponding ensemble.
By P we denote the probability distribution on the phase space Ω corresponding to an ensemble.

Then for any function F defined on Ω, it makes sense to ask for its mean value with respect to the
probability distribution P,

⟨F ⟩P =
∫

Ω
F (w)dP(w).

We will later see that in this mathematical framework, however large, no system of finite particle
size can truly account for the thermodynamic behaviour described in Section 2.1. It will therefore be
necessary to consider a limit of infinite volume and particle number, the so-called thermodynamic
limit. Nevertheless, below we first introduce ensembles for finite systems and explain how they
relate to thermodynamic quantities, and then discuss the thermodynamic limit.
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2.2.2 Thermodynamic states and the partition functions

We repeat the derivation of the microcanonical, the canonical and the grand canonical ensemble
and their key properties. Unless indicated otherwise, we essentially follow part 1 of [Min00].

The microcanonical ensemble To derive the probability distributions corresponding to ensem-
bles, we start from a microscopic description of a many-particle system. From a microscopic point
of view, a thermodynamic system consists of a large number of individual, possibly interacting
particles. Let Λ ⊂ Rd be a bounded domain of volume V = |Λ| where d ∈ N is the dimension
of the system under consideration, and consider a system of N identical point particles moving
inside Λ. Each particle i is characterised by a position qi and a momentum pi. We introduce
Q := (q1, · · · , qN ) and P := (p1, · · · , pN ). The tuple (Q,P ) is an element of the phase space

ΩΛ,N =
(
Λ × Rd

)N
⊂ R2Nd.

The Hamiltonian is one of the main characteristics of the system. It depends on the particle
number N and the admissible domain Λ, and it usually has the form

HΦ
Λ,N =

N∑
i=1

p2
i

2m +
∑

X⊂ΛN

Φ(X),

where Φ is the interaction potential accounting for both the interactions between the particles
and between a particle and an external field. For the existence of the thermodynamic limit, the
potential Φ needs to be sufficiently short-ranged whilst also preventing the particles to collapse into
a finite region of space. A more detailed discussion follows in Section 2.2.4.

The microscopic dynamics of the system is determined by the Hamilton equations of motion,

q̇i = ∂H

∂pi
, ṗi = −∂H

∂qi
.

Writing Qt := (q1(t), · · · , qN (t)), Pt := (p1(t), · · · , pN (t)), the dynamics of the system can be
viewed as collection of maps {St}t∈R, where

St : ΩΛ,N → ΩΛ,N , (Q0, P0) 7→ (Qt, Pt).

In the symplectic geometry picture, where the phase space is regarded as a symplectic manifold,
this is also known as the Hamiltonian flow. By the Liouville theorem (Theorem 3.4 in [Bri22]), the
dynamics given by the maps {St}t preserves the phase space volume, that is,

VolSt(B) = VolB for all B ⊂ ΩΛ,N and t ∈ R,

and since we assume that the Hamiltonian is time-invariant, it also preserves the energy,

HΦ
Λ,N (St(Q0, P0)) = HΦ

Λ,N (Q0, P0) for all t ∈ R.

5



Lee-Yang Theorem à la Lieb-Sokal Paula Heim

Each level surface of the energy

ΩΛ,N,E =
{
(Q,P ) ∈ ΩΛ,N : HΛ,N (Q,P ) = E

}
(2.2)

is thus mapped by St to itself,

StΩΛ,N,E = ΩΛ,N,E .

Hence the dynamics on each surface can be considered separately which motivates the definition
of the following measure.

Definition 2.1. The microcanonical measure λΛ,N,E is defined on an energy level set ΩΛ,N,E by

λΛ,N,E(B) := lim
∆E→0

Vol(∆B)
∆E ,

where B ⊂ ΩΛ,N,E and ∆B is formed by segments of normals to ΩΛ,N,E that begin in B and extend
to ΩΛ,N,E+∆E .

A proof for the existence of the limit whenever ΩΛ,N,E is a regular submanifold of ΛNd ×RNd can
be found in [GS64], pp. 220.
The microcanonical measure can be interpreted as measuring the density of states on the energy

level surfaces. The precise form of λΛ,N,E depends on Λ, N and E. Due to the preservation of
energy and phase space volume, the measure remains invariant under the microscopic dynamics.
In the spirit of understanding thermodynamics, our focus shifts from the description of individual

microstates to the specification of macroscopic quantities that characterise the system. Instead of
considering the precise configurations (Q,P ) of the particles of the system, we are interested in
macroscopic observables. Importantly, for a given macroscopic state, there can be a multitude of
microscopic configurations compatible with it in the sense that they yield the same values for the
given macroscopic quantities.
A collection of configurations compatible with certain macroscopic constraints is called an ensem-

ble. The microstates of an ensemble are distributed in ΩΛ,N according to some density function
ρ(Q,P ). When normalised to one,

ρ(Q,P )
N∏

i=1
ddqiddpi

yields a probability measure on phase space. This implies that an ensemble can equivalently be
described by some probability distribution P on ΩΛ,N .
The main postulate in statistical physics states that, given a macroscopic state, each microscopic

configuration compatible with that state is equally likely to be realised by the system (pp. 127
in [Hua63]). The distribution must be invariant under time evolution, that is,

P(B) = P(S−1
t B)

6
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for all B ⊂ ΩΛ,N , because we are considering equilibrium systems. Together with the main postulate
of statistical mechanics, we can now define the first ensemble by the following distribution.

Definition 2.2. The microcanonical distribution Pmicrocan.
Λ,N,E is the distribution obtained from nor-

malising the microcanonical measure. It is given by

Pmicrocan.
Λ,N,E (B) = λΛ,N,E(B)

λΛ,N,E(ΩΛ,N,E) .

Up to a factor of λΛ,N,E(ΩΛ,N,E)−1, the measure is the same as the microcanonical measure. In
particular, this implies that it is invariant under time evolution.
The canonical ensemble
In the microcanonical distribution, the energy of the system must be held constant. However,

this constraint is often inconvenient in both theoretical considerations and experimental setups.
Instead, one might be interested in situations where a system is in contact with a heat bath. This
keeps its temperature fixed while allowing energy fluctuations between the system and the heat
bath. The total of the system and the heat bath can now be described in the microcanonical
ensemble. The probability distribution of the microstates of the system is obtained by integrating
the microcanonical distribution over the parameters that belong to the heat reservoir. In other
words, it is a marginal distribution (Chapter 7.1 in [Hua63], Chapters 4.7.1 and 6.14.1 in [FV18]).
We introduce the inverse temperature β = 1

kBT , where T is the temperature and Boltzmann’s
constant kB is introduced so that β is measured in units of inverse energy. The variable β is more
convenient to work with than T .
We can now define another ensemble, the canonical ensemble. It is characterised by the following

probability distribution.

Definition 2.3. The canonical distribution Pcan.
Λ,N,β is defined as

Pcan.
Λ,N,β(Q,P ) = 1

ZΛ,N,β

1
hNd

e−βHΦ
Λ,N

(Q,P ). (2.3)

The normalisation factor ZΛ,N,β is the partition function,

ZΛ,N,β = 1
hNd

∫
ΩΛ,N

e−βHΦ
Λ,N

(Q,P )
N∏

i=1
ddqiddpi. (2.4)

The constant prefactor has no physical relevance and could also have been omitted. However, there
are good reasons to include it. It is convenient to work with a dimensionless partition function
because then, the distribution (2.3) can be thought of as a probability distribution. This is achieved
by including a factor 1

hNd where h has the units of an action. The magnitude of h is irrelevant for
our discussion.
Taking into account the invariance of both the Hamiltonian and the Lebesque measure

N∏
i=1

ddqiddpi

with respect to the time evolution of the system, is is clear that the distributions (2.3) are also
invariant under the dynamics.

7



Lee-Yang Theorem à la Lieb-Sokal Paula Heim

It can be shown that, if the thermodynamic limit exists, the distribution (2.3) is equivalent to the
microcanonical distribution in the sense that in the thermodynamic limit, the resulting distributions
are the same everywhere except possibly at the points of phase transitions (pp. 145 in [Hua63],
Chapter 4 in [Min00]).

The grand canonical ensemble

So far, the assumption has been made that the number of particles is always precisely known.
This, however, is in most experimental situations not realistic, so that we introduce yet another
distribution, the grand canonical distribution. When we let the system exchange particles with its
environment, it makes sense to introduce the chemical potential µ as the change in internal energy
that a change in particle number at constant volume and entropy causes. A similar consideration
as before is used where the system is imagined as being in contact with a heat and particle reservoir
and its probability distribution is again obtained as a marginal distribution from the microcanonical
description of the total of system and heat bath. A certain value for the chemical potential replaces
the fixed particle number N as macroscopic condition in the grand canonical ensemble.

The N -particle phase space ΩΛ,N can no longer account for systems with variable particle number.

A new phase space must therefore be introduced. Let λ(N)
Λ = 1

hNd

N∏
i=1

ddqiddpi be the dimensionless
Lebesgue measure on ΩΛ,N . Then, the phase space of a system of variable particle number can be
defined as the union of the N -particle phase spaces,

ΩΛ :=
⋃

N∈N0

Ω(N)
Λ ,

where Ω(0)
Λ = ∅ can be identified with the vacuum.

We introduce a measure λΛ on ΩΛ using the measures λ(N)
Λ in the following way,

λΛ(B(0) ∪B(1) ∪ · · · ∪B(N) ∪ · · · ) := λ
(0)
Λ (B(0)) + λ

(1)
Λ (B(1)) + · · · + λ

(N)
Λ (B(N)) + · · · ,

where B(N) ⊂ Ω(N)
Λ and we assume λΛ(∅) = 1.

If the system is in a microstate c = (q1, · · · , qN ) ∈ ΩΛ, then its energy is taken to be HΦ
Λ (c) =

HΦ(N)
Λ,N ((q1, · · · , qN )) where Φ(N) is the interaction potential that belongs to the N -particle Hamil-

tonian HΛ,N , and Φ contains all potentials Φ(N). It is assumed that HΦ
Λ (∅) = 0.

With these preliminaries, we can define the grand canonical ensemble which is characterised by
the following probability distribution.

Definition 2.4. Let c ∈ ΩΛ and N(c) is the number of particles in the configuration c. We define
the grand canonical distribution as the following probability distribution on the phase space ΩΛ.

Pgrandcan.
Λ,N,β (c) = 1

ZG
Λ,β,µ

e−βHΦ
Λ (c)+βµN(c). (2.5)

8
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The normalisation factor ZG
Λ,β,µ is the grand partition function

ZG
Λ,β,µ =

∫
ΩΛ

e−β(HΦ
Λ (c)−µN(c))dλΛ(c)

= 1 +
∞∑

N=1
eβµN 1

hNd

∫
ΩΛ

e−βHΦ(N)
Λ,N

(c)dλ(N)
Λ (c) = 1 +

∞∑
N=1

zN ZΛ,N,β

where the fugacity z := eβµ was introduced and ZΛ,N,β is the corresponding canonical partition
function.

As in the case of the canonical and the microcanonical distribution, it can be shown that, if the
thermodynamic limit exists, the canonical and the grand canonical distribution are equivalent in
the sense that in the thermodynamic limit, the resulting distributions are the same everywhere
except possibly at the points of phase transitions (pp. 157 in [Hua63], Chapter 4 in [Min00]).

2.2.3 Partition functions and thermodynamic quantities

In this section, we establish the link between statistical physics and thermodynamics. It essentially
relies on a suitable definition of entropy. We denote V = |Λ| and follow Chapters 6.3, 7.1 and 7.3
in [Hua63].
For the microcanonical ensemble, we can take the Boltzmann entropy, defined by

S(Λ, N,E) := kB log λΛ,N,E(ΩΛ,N,E), (2.6)

where kB is Boltzmann’s constant and will be set to 1 from now on. The Boltzmann entropy (2.6)
has the properties of the entropy in thermodynamics. These are that S is an extensive quantity,
meaning that S increases when adding several systems together, and that, in accordance with the
second law of thermodynamics, the entropy of an isolated system never decreases (this is established
in Chapter 6.2 of [Hua63] and pp. 27 in [FV18]).
Motivated by the corresponding Maxwell relation in thermodynamics (p. 50 in [Oli17]), the

temperature T of a system can be defined by

1
T

:= ∂S(Λ, N,E)
∂E

.

It can be shown that with this definition, the temperature is precisely the parameter that is equal
in two otherwise isolated systems that are in equilibrium (see for example [Hua63], p. 133).
Other thermodynamic quantities can be defined analogously to the corresponding identities in

thermodynamics,

P = T

(
∂S

∂V

)
E
, dE = TdS − PdV, U(S, V,N) =

∫
dE, F = U − TS, cV =

(
∂U

∂T

)
V
.

In general, these quantities are dependent on the parameters of the microcanonical distribution
Λ, N,E, but for better readability, we omit carrying along the arguments for the most part.

9
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Considering the canonical ensemble, suppose we coarse-grain phase space in a way that all states
in a phase space cell have energies between E and E + ∆E. We associate the value E with the
microstates in such a phase space cell. As the energy of a system usually varies continuously,
the procedure of coarse-graining is necessary to make the set of equal energy phase space cells
countable. This has the advantage that we can express the canonical partition function as a sum
over different energy level sets,

ZΛ,β,N =
∑

n

e−βEnλΛ,N,En(ΩΛ,N,En) =
∑

n

e−βEn+S(Λ,N,En)

where {En : n ∈ N} are the possibly discretised energies.

A comparison with the definition of the free energy from thermodynamics,

F (T, V,N) = inf
S

{U(S, V,N) − TS}

suggests the identification

ZΛ,N,β = e−βF (β,Λ,N).

Our argument is far from a mathematically rigorous derivation. We claim that this identification
works and refer to the literature (pp. 144 in [Hua63] or pp. 31 in [FV18]) for a more thorough
treatment.

Other thermodynamic quantities can again be derived from the corresponding identities in ther-
modynamics,

P = −
(
∂F

∂T

)
V
, S = −

(
∂F

∂T

)
V
, U = F + TS.

These definitions are compatible with the quantities that were defined before.

In the grand canonical ensemble, a similar approach can be employed to derive from

ZG
Λ,β,µ =

∑
N,En

eβµN−βUλΛ,N,En(ΩΛ,N,En) =
∑

N,En

eβµN−βU+S(Λ,N,E)

and the following relation from thermodynamics,

ΦG(T, V, µ) = inf
N,S

{U(S, V,N) − TS − µN} = −PV,

where the second equation results from the Euler relation for homogeneous systems (p. 8 in [FV18]),
the identification

P = 1
βV

log ZG
Λ,β,µ = 1

βV
log

(
1 +

∞∑
N=1

zN ZΛ,N,β

)
. (2.7)

A more rigorous treatment can be found in the literature (pp. 33 of [FV18] or pp. 149 in [Hua63]).
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Other thermodynamic quantities can be derived from the corresponding identities in thermody-
namics,

U = ∂

∂β
(βΦG), cV = −

(
∂U

∂T

)
V
, S = −

∫ T

0
dT cV

T
, F = U − TS.

Anything that was already defined is compatible with these definitions.
From the identifications we gave it is obvious that in statistical mechanics, as in thermodynam-

ics, thermodynamic quantities are related to the characteristic potential and its derivatives. We
therefore make our previous notion of a phase transition more precise in order to base the following
discussion on a rigorous foundation.

Definition 2.5. We speak of a phase transition whenever the characteristic potential as a function
of the thermodynamic parameters exhibits a lack of smoothness.

2.2.4 The thermodynamic limit

For a finite system, the pressure (2.7) is smooth as a function of β, V and z because the grand
partition function is positive and the logarithm is an analytic function on the positive real numbers.
This is also true of the other thermodynamic quantities. A finite system therefore never shows a
phase transition. Furthermore, relative fluctuations in finite systems are non-negligible, leading to
non-equivalence of ensembles. This demonstrates that finite systems are not sufficient to obtain
thermodynamic behaviour.
When describing thermodynamics, we identify equilibrium states with the infinite limits of the

ensembles. These limits will not always exist, and it is therefore important to verify that this is
the case before applying the methods of statistical mechanics. As we are interested in systems with
thermodynamic behaviour, we expect that the equilibrium states describe a situation where

(a) each subsystem has negligible interaction energy with the subsystems that are far away,

(b) in a bounded region of space, the number of subsystems remains finite.

This implies that interactions must be weak whenever subsystems are far away from each other, and
that they prevent the collapse of an infinite number of subsystems into a bounded region of space.
Depending on the system, mathematically formalising the two conditions can be a rather intricate

task. A comprehensive study of sufficient conditions can be found in Chapters 2 and 3 in [Rue07]
or in Chapter I.A in [Len73]. In this section, we focus on lattice systems with pair interactions
described in the grand canonical ensemble only since these include the ferromagnetic models that
we are interested in. Our arguments follow the discussion in Chapter 2 of [Rue07].
In the grand canonical ensemble, taking the thermodynamic limit involves letting the volume

become arbitrarily large, and we first need to specify how to do that.

11
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Definition 2.6. Let (Λn)n∈N ⊂ Zd a sequence of bounded sets. We define V (Λn) to denote the
cardinality of Λn and Vh(Λn) the cardinality of the set of points with distance at most h to the
boundary of Λn. We say that (Λn)n∈N ⊂ Zd tends to infinity in the sense of Van Hove if

lim
n→∞

V (Λn) = ∞ and lim
n→∞

Vh(Λn)
V (Λn) = 0.

We write Λ V.H.→ ∞ when considering the limit n → ∞ for any sequence (Λn)n∈N ⊂ Zd that tends
to infinity in the sense of Van Hove.

The notation Λ V.H.→ ∞ is justified because the conditions of the previous definition guarantee
that, if the limit of a quantity that depends on the volume exists, it is independent of the sequence
chosen (see Chapter 2.1 in [Rue07] and pp. 83 in [FV18]).
In the context of the next theorem, let an interaction be a translation-invariant function

Φ: {X ⊂ Zd : X finite} → R, Φ(X + a) = Φ(X) for all a ∈ Zd,

satisfying Φ(∅) = 0. We define the map ∥·∥ on the space of interactions

∥Φ∥ =
∑

X : 0∈X

|Φ(X)|
|X|

.

On the subspace of interactions B = {Φ: ∥Φ∥ < ∞}, the map ∥·∥ is a norm, and equipped with
this norm, B is a Banach space.
If we denote Bk = {Φ: Φ(X) = 0 for |X| ̸= k} the space of k-particle interactions, then pair

interactions are of the form Φ = (Φ1,Φ2) ∈ B1 ⊕ B2. The pressure (2.7), from which other ther-
modynamic variables can be derived in the grand canonical ensemble, depends on the interaction
through the Hamiltonian HΦ

Λ (qi, pi) = ∑
i

p2
i

2m + Φ((qi)i) in the partition function. Theorem 2.7 will
indicate that the interaction plays a role in determining if the pressure is well-defined in the ther-
modynamic limit. To make the dependence of the pressure on the interaction clear, we write Φ as
an argument of the pressure. With our previous considerations, this is

PΛ(Φ) = 1
β |Λ|

log ZG
Λ,β,µ = 1

β |Λ|
log

∫
ΩΛ

e−β(HΦ
Λ (c)−µN(c))dλΛ(c), (2.8)

where c is a configuration in the phase space ΩΛ. In the previous sections, the pressure has always
been denoted without the argument Φ which is only introduced for clarity here. In the following
sections, we will drop the argument again, but, of course, the dependence remains valid.
The following theorem guarantees the existence of the thermodynamic limit of (2.8).

Theorem 2.7. For all pair interactions Φ ∈ B1 ⊕ B2, let the pressure PΛ(Φ) be defined by (2.8).
Then, in the thermodynamic limit, the pressure exists and is finite. It is given by

P (Φ) = lim
ΛV.H.→ ∞

PΛ(Φ).
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The proof of Theorem 2.7 involves deriving such a statement for all interactions Φ ∈ B and then
obtaining the thermodynamic limit for pair interactions as a special case of the general theorem.
Giving this proof would go beyond the scope of this thesis, therefore we simply refer to the literature
(pp. 23 in [Rue07]) instead. It is nonetheless interesting (but not surprising, as classical statistical
mechanics must be a limit of quantum statistical mechanics) to note that the general theorem
can be derived from the quantum case by expressing the classical statistical ensembles as limits of
quantum statistical ensembles.
It can be shown (see for example Chapter 8 in [Min00], Chapters 2 and 3 in [Rue07], Chapter 1

in [Len73], parts of Chapters 6 and 7 in [Hua63] and pp. 121 in [Gal99]) that under the condition
that the interaction is in B1 ⊕ B2, when replacing a thermodynamic quantity X by its density
per volume xΛ,

xΛ = X

|Λ|

the limits of the densities exist in the thermodynamic limit. Hence

x = lim
ΛV.H.→ ∞

xΛ

is well-defined and describes the thermodynamic behaviour of the system.
All systems in nature are, of course, finite, so there is a legitimate question as to why we can

observe phase transitions at all if they only occur in infinite systems. A possible answer, given by
[FV18], pp. 47, is that real systems are quite large, thus they exhibit behaviour that is almost
singular. In an experiment this will be indistinguishable from real singularities. In addition, we
always make simplifications when modelling physical processes because the complexity of even the
simplest situations, if described in full detail, would often be beyond our mathematical tools and
computational capabilities. Taking the thermodynamic limit is therefore well justified in that it
allows us to study phase transitions by investigating the analytical properties of the thermodynamic
functions. This is not to say that finite systems are not per se interesting in the context of
studying phase transitions. There is a well-developed theory of finite-size scaling which describes the
deviation of the behaviour of finite systems from those of infinite systems due to finiteness [BK90].

2.3 Modelling phase transitions in ferromagnets

2.3.1 The Ising model and two variants

Ferromagnetism is the phenomenon of spontaneous alignment of magnetic moments in materials.
Ferromagnetic phase transitions occur when ferromagnetic materials undergo sudden changes in
their magnetic properties as external conditions vary. The simplest model for such phenomena
is the Ising model. Proposed by Wilhelm Lenz in 1920 and investigated by his student Ernst
Ising, it was the first significant approach to understand these transitions mathematically [Isi+17].
Ising’s work [Isi25] provided an exact solution for the one-dimensional Ising model but the model
failed to exhibit a phase transition. In 1936, Rudolf Peierls published a famous argument [Pei36]
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Lee-Yang Theorem à la Lieb-Sokal Paula Heim

indicating that spontaneous symmetry breaking occurs at nonzero temperature in the Ising model
in two or more dimensions, opening the door to further research into the model. It was not
until eight years later that an exact solution of the two-dimensional Ising model was obtained by
Lars Onsager, thereby determining the exact values of the thermodynamic variables at which the
transition occurs [Ons44]. Peierls’ argument was turned into a rigorous proof by Griffiths [Gri64]
and, independently, by Dobrushin [Dob68]. The Ising model has gained significant popularity since
then and found numerous applications beyond ferromagnetism, extending to diverse fields such as
biological processes (Chapter 2.7 in [LB99]), economics [Lip22] and social behaviour [Sta08].

In this section, we formally introduce the original Ising model and two variants of it. The variants
are slight generalisations of the original Ising model. The first variant no longer restricts the spin-
spin interactions to nearest-neighbour interaction. This is the model for which Lee and Yang proved
the circle theorem. The second variant is a further generalisation of the first variant in that the
possible spin values are not restricted to {±1}. This is the model for which a Lee-Yang theorem
will be proven in the second part of this thesis. For the definition of the models, we follow [FR12].

The Ising model reproduces the behaviour of ferromagnetic materials by representing them as
a collection of particles with inherent magnetic moments or spins. It can be formulated as a
(weighted) graph, where spins represented by random variables ϕi are placed at the vertices, and
edges are added between interacting spins (with edge weights accounting for different interaction
strengths). It is often convenient to consider an embedding of the model in Rd such that the graph
becomes a sublattice of Zd, where d is the dimension of the model. This embedding allows for
an intuitive correspondence to experimentally realisable physical systems and introduces a well-
defined notion of distance, enabling precise interpretations of range-dependent interactions. We
will henceforth adopt this viewpoint.

Let therefore Λ ⊂ Zd be a finite sublattice and associate to each site i a random variable ϕi, referred
to as spin. We allow the spin to take arbitrary values in some set A ⊂ RN . To avoid confusion, we
emphasise that N in this context denotes the number of spin components, not the particle number.
From now on, N will consistently be used with this meaning. While it is common to consider
N = 1 and refer to it as a one-component ferromagnet, the study of multi-component ferromagnets
is equally intriguing. We focus on the case N = 1 here and return to multi-component ferromagnets
in Section 3.5. Let νi be a probability measure on A that captures the a-priori distribution of the
random variable ϕi. Note that the set A must be chosen such that, with an appropriate σ-algebra F ,
the triple (A,F , νi) is a probability space. The space of spin configurations is

AΛ = {ϕΛ := (ϕx)x∈Λ : ϕx ∈ Ω for all x ∈ Λ} .

The interactions between the spins can be described by a potential Φ which associates with every
subset X ⊂ Λ an interaction energy Φ(X) of all spins in X. We assume that Φ is a pair interaction
of the form

Φ(X) =
∑

(i,j)∈X2

Jijϕiϕj +
∑
i∈X

hiϕi, (2.9)
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where Jij = Jji is the interaction coefficient and hi is the external magnetic field at site i. For a
ferromagnetic interaction, one takes Jij ≥ 0. The Hamiltonian of the system is then

HΦ
Λ = −

 ∑
(i,j)∈Λ2

Jijϕiϕj +
∑
i∈Λ

hiϕi

 .
For the existence of the thermodynamic limit, according to the discussion in Section 2.2.4 and

specifically Theorem 2.7, it is sufficient to show that Φ is translation-invariant and that

∥Φ∥ =
∑

X : 0∈X

|Φ(X)|
|X|

=
∑

X : 0∈X

|Ji0ϕiϕ0| + |h0ϕ0| < ∞. (2.10)

Translation-invariance is certainly given when Jij only depends on |i− j|, and when, in addition,
the magnetic field is homogeneous, that is, hi = h everywhere. The condition (2.10) is fulfilled
whenever each spin only interacts with finitely many other spins or when the strength of the
interaction decreases sufficiently fast with increasing distance.
If these conditions are not fulfilled, then the thermodynamic limit can still exist, or it could exist

in a different (weaker) sense, but, with the tools at hand, we cannot make any statement about it.
However, in a later section in Theorem 2.9, we address this issue again for the models of interest.
In the original Ising model, the interaction is restricted to nearest-neighbour interactions which

means that Jij = J ̸= 0 if and only if i, j are nearest-neighbours. The spin variables ϕi can take
values of ±1 with equal probability,

dν(ϕi) = 1
2 (δ(ϕi − 1) + δ(ϕi + 1)) . (2.11)

Definition 2.8. We now define two slightly generalised versions of this model.

(a) In this model, we assume that the spins are distributed according to (2.11) and the magnetic
field is homogeneous, but we allow arbitrary interaction coefficients Jij .

(b) In this model, the spin distributions νi can be any probability measures on A and we allow
arbitrary interaction coefficients Jij and magnetic fields hi.

For all these models, we say that they are ferromagnetic whenever spin alignment lowers the
energy which is precisely the case when Jij ≥ 0 for all i, j.

2.3.2 The Ising model in statistical mechanics

At first sight, it may not seem obvious that the Ising model can be adequately described within the
framework of thermodynamics and statistical physics, since conventional thermodynamic quantities
such as pressure, density and specific heat have no obvious interpretation. Lee and Yang contributed
to establishing a solid foundation for analysing Ising-like models with the tools of statistical physics.
They demonstrated the mathematical equivalence between models of type 2.8(a) and a lattice
gas [LY52b]. Recall that a lattice gas involves sites on a lattice which can be either occupied
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or unoccupied. Through a simple transformation of variables, the occupied sites are identified
with (+1)-spins, and the unoccupied sites with (−1)-spins. This transformation establishes a
direct correspondence for various key properties. Specifically, the following table summarises the
quantities are equivalent between the two models. Note that some correspondences are expressed
as functions of the listed quantities.

Ising model Lattice gas
Number of spins M Volume V
Number of down spins Number of atoms
Magnetisation 2

1−m Specific volume v
Free energy density −f − h Pressure P
Fugacity y = e−2βh Fugacity z = eβµ

More generally, also the two variants 2.8(a) and (b) can be described within the previously estab-
lished framework by replacing the parameter µ that determines the grand canonical distribution
with the magnetic field h, although for the models 2.8(b), there is in general no correspondence to
a lattice gas. The grand canonical distribution takes on the form

Pgrandcan.
Λ,β,h (c) = 1

ZG
Λ,β,h

e−βHΦ
Λ (c), (2.12)

where c ∈ AΛ is a spin configuration. Note that the magnetic field has been absorbed into the
definition of the Hamiltonian, unlike the chemical potential in (2.5). The partition function becomes

ZG
β,Λ,h =

∫
AΛ

e−βHΦ
Λ (ϕΛ)∏

i∈Λ
dνi(ϕi). (2.13)

For the Ising model (and the generalisation 2.8(a)), where

dνi(ϕi) = 1
2 (δ(ϕi − 1) + δ(ϕi + 1)) for all i,

the partition function can be expressed as a polynomial in y of degree M ([FV18] pp. 83).
For the Ising-like models of type 2.8(b) with more general spin distributions, the partition function

may no longer be polynomial, but (2.13) can still be used to define the partition function.
We already discussed that ∑

X : 0∈X

|Φ(X)|
|X| < ∞ is a sufficient condition for the free energy density

f := − lim
ΛV.H.→ ∞

1
β |Λ|

log Zβ,Λ,h (2.14)

to exist and be finite whenever β > 0, and we confirmed that the original Ising model and certain
variants of it fulfils the condition. Technically speaking, it would be correct to use the term ’grand
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potential density’ instead of free energy density in accordance to the terminology developed in
Section 2.1, but as (2.14) is usually referred to as the free energy density, we save ourselves the
linguistic pedantry and simply refer to it as the free energy density.
The physical quantities of interest are the ’pressure’ P , the mean magnetisation m and its deriva-

tives. Each spin carries a magnetic moment so that we define the mean magnetisation mΛ of a
finite system with volume Λ as

mΛ = ⟨mΛ((ϕi)i∈Λ)⟩Pgrandcan.
Λ,β,h

, where mΛ((ϕi)i∈Λ) = 1
|Λ|
∑
i∈Λ

ϕi. (2.15)

Through the grand canonical distribution Pgrandcan.
Λ,β,h it depends on Λ, β and h, but, for the sake of

readability, we decided not to include arguments or indices that could make the dependence on β

and h explicit. The pressure of a finite system PΛ is a function of Λ, β and h is given by (2.7),

PΛ := 1
β |Λ|

log ZG
Λ,β,h. (2.16)

Again, we refrain from carrying the arguments β, h. We know that a phase transition can only
occur in the infinite volume limit

P := lim
ΛV.H.→ ∞

PΛ,

which is a function of β and h. The mean magnetisation in the thermodynamic limit is obtained as

m := lim
ΛV.H.→ ∞

⟨mΛ⟩Pgrandcan.
Λ,β,h

= ∂P

∂h
, (2.17)

which is also a function of β and h. It is not obvious that the limit and differentiation can be
swapped, but this is in fact the case and we refer to our Theorem 2.9 for a proof sketch and to
[FV18], pp. 89, for a complete proof. The first partial derivative of the magnetisation m by the
external field h describes the magnetic susceptibility χ,

χ = ∂m

∂h
,

which, again, is a function of β and h. At a first-order phase transition, a discontinuity in m

appears, whereas at a higher-order phase transition, one of its derivatives fails to be continuous.

2.3.3 Spontaneous symmetry breaking

In the case of d = 1 dimension, the free energy density (2.14) depends analytically on h in the
thermodynamic limit for all finite values of β, thus precluding the possibility of a phase transition
at non-zero temperature (see, for example, pp. 44 in [LB99], and of course [Isi25]). However, in
d ≥ 2 dimensions, this is no longer the case, and the ferromagnetic Ising model displays a phase
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transition. While an exact analytic description of the phase transition remains a challenging task
in d = 2 (Chapter 7.1 in [Gal99]) and is a yet unsolved problem in d = 3 dimensions, a qualitative
argument can be made for the occurrence of a phase transition from a disordered to an ordered
phase. In the unordered phase and at zero magnetic field, models of the form 2.8(a) are symmetric
under a global spin flip (ϕi)i∈Λ → (−ϕi)i∈Λ. In the ordered phase, this symmetry is broken. Thus,
the quantity whose change indicates a first order phase transition is the mean magnetisation mΛ

that was defined in (2.15). Note that it is possible for the magnetisation to be continuous, but one
of its derivatives could be discontinuous. In that case, a phase transition of higher order occurs.
In this section, we present a simple argument that indicates the presence of a symmetry breaking
by investigating the grand canonical distribution of the model in the high- and low-temperature
limits at zero external field. We follow pp. 45 in [FV18].

In the high-temperature limit (T → ∞ or equivalently β → 0) and for vanishing external magnetic
field, the thermal energy of the spins dominates over the attractive interaction between neighbouring
spins, causing the grand canonical distribution (2.12) to converge to a uniform distribution on the
space of spin configurations AΛ. As a result, the magnetisation (2.15) becomes a sum of independent
and identically distributed random variables ϕi with expectation value ⟨ϕi⟩Pgrandcan.

Λ,β,h
= 0 for all i.

Consequently,

lim
T →∞

mΛ = 0

follows from the law of large numbers, and this must also hold in the thermodynamic limit.

Conversely, in the low-temperature limit, the distribution (2.12) at zero magnetic field favours
states that minimise the Hamiltonian. For the ferromagnetic Ising model, the states of minimum
energy are the ground states where all spins are aligned, leading to

lim
T →0

mΛ ̸= 0.

The global spin flip no longer preserves the symmetry.

The distinct behaviours for the system at high and at low temperatures demonstrate the existence
of a phase transition that breaks the spin flip symmetry. However, no statement can be made
about the temperature at which the phase transition occurs. We know that in d = 1 dimension, the
transition happens at zero temperature whereas it occurs at a finite temperature in finite dimension.
Moreover, the role of the magnetic field (that has been set to zero) needs to be examined. In the
following, we present the findings of Lee and Yang whose approach addresses precisely the role of
the magnetic field for phase transitions of the Ising model and conclusively proves that no phase
transition is possible at nonzero magnetic field.

If we consider models of the form 2.8(b) with spin values distributed according to distribu-
tions {νi}n

i=1, the expected magnetisation in the high- and low-temperature limit may be different.
It still holds that in the high-temperature limit, the spins are essentially independently distributed
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so that the mean magnetisation and the mean of the expectation values of the measures νi coincide,

lim
T →∞

mΛ = 1
|Λ|

n∑
i=1

∫
Ω

dνi.

As T → 0, the system’s grand canonical distribution will again favour its energy-minimising
ground state(s). Without further information about the spin distributions {νi}n

i=1 it is impossible
to make more precise statements about the occurence of spontaneous symmetry breaking. However,
even if no symmetry breaking occurs, there can still be phase transitions of higher order. In the
second part of this thesis, it is demonstrated that phase transitions in such systems can only occur
at zero magnetic field, just like for the models of the form 2.8(a).

2.4 Lee-Yang approach and circle theorem

2.4.1 The central idea

We discussed in Section 2.2.3 that a characteristic potential (here the grand potential) is propor-
tional to the logarithm of the partition function. Whenever this potential is an analytic function
of the control parameters, the physical observables are also analytic, indicating that the system
exists in a single phase. However, at the point of a phase transition, the characteristic potential,
and therefore the logarithm of the partition function, exhibits a lack of smoothness. Lee and Yang
realised that this lack of smoothness is related to zeros of the partition function [LY52a]. Their
analysis applies to systems of the form 2.8(a), so we restrict the discussion of their results to those
systems only.
Recall that the grand partition function of such a sytem with M spins can be written as a

polynomial in the variable y = e−2βh,

ZG
β,Λ,h = K

M∏
i=0

(
1 − y

yi

)
. (2.18)

The yi are the zeros of the polynomial and K ∈ R is a for the analytic behaviour irrelevant constant.
We established that ZG

β,Λ,h is analytic whenever the number of particles and the volume are finite
as a polynomial of finite degree in y. The control parameter is y = e−2βh, because h is the quantity
that can be varied experimentally. Obviously, y can only have nonnegative real values in a real
world experiment. Consequently, yi ̸∈ R+ because the thermodynamic quantities of a finite system
must depend smoothly on the parameters as such a system never exhibits a phase transition. It
follows that ZG

β,Λ,h is real and positive whenever h ∈ R, so that the logarithm of the partition
function and all its derivatives are smooth. This observation is consistent with the discussion in
Section 2.2.4, and it shows once more that for the study of phase transitions, the thermodynamic
limit must be investigated.
Lee and Yang investigated the information that the complex zeros of the partition function contain

about the phase transitions. Their idea was to study the zeros of the partition function by employing
complex values for the magnetic field h or equivalently complex values for the variable y as a
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computational tool. The polynomial (2.18) has its zeros somewhere in the complex y-plane but not
on the physically accessible positive real y-axis. As the system size increases, the location of the
zeros changes, and it is only in the thermodynamic limit that they might appear on the positive real
y-axis. The relation between the logarithm of the partition function and the physical properties of
the system suggests that a phase transition happens at the limit points of the zeros on the positive
real y-axis. It was the accomplishment of Lee and Yang to prove this relation conclusively.
The distribution of the zeros of ZG

Λ,β,h in the complex y-plane thus provides valuable insights
into the occurrence and location the of phase transitions. By examining the accumulation points
of the zeros in the thermodynamic limit, one can, in principle, identify the presence of a phase
transition. Furthermore, the distribution enables the derivation of various quantities that describe
the system’s behaviour near the phase transition point. In the following we will give a comprehensive
presentation of the exact results and statements on the distribution of zeros and their significance
for the characterisation of phase transitions.

2.4.2 Zeros of the partition function and phase transitions

We state the precise relation between the zeros in the complex y-plane and the appearance of phase
transitions as found by Lee and Yang [LY52a].

Theorem 2.9. If in the complex y-plane a region containing a segment R of the positive real axis
is free of zeros for all Λ, then the quantities

1
|Λ|

log ZG
Λ,β,h,

∂

∂ log y
1

|Λ|
log ZG

Λ,β,h,
∂2

∂ log y2
1

|Λ|
log ZG

Λ,β,h, · · ·

approach a limit that is analytic in y. Furthermore, the operations ∂/∂ log y and lim
|Λ|→∞

commute

in R such that in the thermodynamic limit, the pressure P and the magnetisation m, given by

P = lim
|Λ|→∞

1
β |Λ|

log ZG
Λ,β,h, m = 1 − 2 lim

|Λ|→∞

∂

∂ log y
1

|Λ|
log ZG

Λ,β,h,

are analytic in the control parameter y. This is equivalent to the system being in a single phase.

The infinite volume limit considered by Lee and Yang is obtained by filling out the volume Λ with
boxes that can be partitioned into cubes whilst assuming that the ratio N/ |Λ| remains bounded
as the system size increases. Such a sequence tends to infinity in the sense of Van Hove because
the ratio surface

volume of a cube is proportional to 1
sidelength which tends to zero as the cubes become

arbitrarily large. A similar statement holds for boxes composed by cubes.
The theorem holds regardless of whether the partition function is polynomial in the fugacity or

not. A proof for the polynomial case can be found in Appendix II in [LY52a]. It consists of proving
the statement for a circle C contained in R first by expressing log ZΛ,β,h

|Λ| as a power series. It is
possible to confirm that the power series is absolutely convergent, this relies on the polynomial
form of the partition function. Then, the summation and the limit |Λ| → ∞ can be exchanged.
The resulting power series is absolutely convergent in C and therefore represents a function that is
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analytic in the interior of C. This argument can be repeated until the circles fill all of R.1

Conversely, consider the opposite case in which a limit point y1 of the complex zeros is found
on the real y-plane as |Λ| → ∞. The point y1 divides the real axis into two segments R1, R2. In
general, the location of y1 is temperature-dependent. Within each of these segments, the pressure P
and the magnetisation m are analytic, this follows from Theorem 2.9. At the point y1, the pressure
is continuous (this is proven in Theorem 1 in [LY52a]), but its derivative m has a discontinuity,
indicating a phase transition at that point. We stress that the phase transition is a consequence of
the variation of the external field h while the inverse temperature β remains constant. However,
the value of y = e−2βh at which it occurs is in general temperature-dependent.
Lee and Yang made some more observations that relate different behaviours of the zeros in the

complex y-plane to different physical scenarios, these are listed below.

• If, at a certain temperature Tc the zeros cease to close in onto the real axis at one of the
points as the temperature exceeds Tc, then Tc is a critical temperature for the transition.

• In the case where there exist two such points y1, y2, and they merge at some temperature T0,
then there is a triple point at T0.

• It is possible for the density to be continuous at y1, but then one of its derivatives will in
general be discontinuous. This behaviour typically occurs at the critical temperature but not
at neighbouring temperatures. If it persists over an extended temperature range, there is a
phase transition of higher order.

2.4.3 Circle theorem

In the preceding section, the profound connection between the zeros of the partition function and
the occurrence of phase transition has been explored. From this relation it is evident that we can
gain insights into the phase transition by studying the distribution of the zeros in the complex
y-plane, where y = e−2βh. However, determining this distribution analytically is a challenging and
for many models not yet accomplished task. It was therefore remarkable that Lee and Yang found
that the zeros in the complex y-plane of the partition function of ferromagnetic Ising models of the
form 2.8(a) are on the unit circle [LY52b]. This implies that a phase transition can possibly occur
at no more than one value of y, this is the intersection of the unit circle and the positive real y-axis.
The regularity of the distribution of the zeros not only greatly restricts where a phase transition
can occur, but it also allows thermodynamic properties to be calculated, as is shown below.

1We emphasise that the theorem is also valid for non-polynomial partition functions, this was just not proven
by Lee and Yang. We briefly sketch a proof for the more general models 2.8(b) that are discussed in Section 3.
For these models, we can build a proof upon the idea of Lee and Yang that was sketched above. Suppose that the
partition function can be approximated by polynomials. We will see in the second part of this thesis that this is a
reasonable assumption for the models under consideration. It is therefore analytic in R which implies that its Taylor
series converges in all of R. For the approximating polynomials, the above theorem can be applied in the form in
which Lee and Yang proved it. This yields a sequence of functions that are analytic in R. There are two limit-taking
procedures now, the limit of the polynomials to the partition function and the infinite-volume limit of the pressure
for these polynomial approximating partition functions. In order for the theorem to hold in the desired way, we need
to exchange these two limits. But this is possible because both series are absolutely convergent in R.
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Lee and Yang formulated the circle theorem for a lattice gas where it holds for attractive interac-
tions. We state the theorem for the Ising-like models 2.8(a) with spin-spin interaction coefficients
Jij that are not restricted to nearest-neighbour interactions.

Theorem 2.10. Under the condition that Jij ≥ 0 for all (i, j) ∈ Λ2 (where Jii = 0), the zeros
of the partition function ZG

Λ,β,h of a model of the form 2.8(a) lie on the unit circle in the complex
y-plane.

It is worth noting that this theorem holds irrespective of the range of interaction, the dimension
of the lattice, its size and structure.
The proof of the theorem is based on the invariance of the polynomial partition function (2.18)

under y → 1
y , which results from the symmetry of the models under a global spin flip with a

simultaneous reversion of the magnetic field, h → −h. The theorem is then a consequence of
properties of complex polynomials with this specific symmetry. This also explains why it is difficult
to find similar theorems for other models, because their partition functions need not have this
symmetry or even be polynomial.
A significant implication can be drawn immediately from the circle theorem. While it does not

indicate whether the zeros converge to a point on the positive real y-axis, if such an accumulation
were to occur, it could only happen at y = 1 in the models 2.8(a), which is equivalent to h = 0.
Consequently, the existence of a phase transition is restricted to zero external magnetic field.
It is also worth noting that studying the distribution of the zeros reveals more properties of the

phase transition than merely its location. From the distribution of zeros on the unit circle, we can
derive the grand potential and from it obtain thermodynamic quantities such as the pressure and
the magnetisation. Although this is not further investigated or applied in the further course of this
thesis, we present the ideas because they have many attractive applications to the study of phase
transitions of systems for which a circle theorem holds (for example [MH77]).
We introduce a distribution density function g(θ) so that Mg(θ)dθ is equal to the number of zeros
z between eiθ and ei(θ+dθ). The distribution function is symmetric under θ → −θ as a consequence
of the already mentioned spin-flip symmetry with a reversal of the magnetic field.
Factorising the polynomial and taking the logarithm, one obtains the free energy density in the

infinite volume limit for the Ising model,

f = h+ 1
β

∫ 2π

0
g(θ) log(y − eiθ)dθ.

Moreover, we can derive the pressure P and, using m = ∂f
∂h , the magnetisation m,

P = 1
β

∫ π

0
g(θ) log

(
y2 − 2y cos θ + 1

)
dθ,

m = 1 − 4y
∫ π

0
g(θ) y − cos θ

y2 − 2y cos θ + 1dθ.
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2.4.4 A small glimple into generalisations and further areas of interest

In the decades after Lee and Yang published these ideas, their approach has been applied to a wide
range of systems and many versions of their circle theorem have been found. Considering that these
versions span a wide range of situations, they may not always make a statement about precisely
the unit circle, so that we speak more generally of Lee-Yang theorems. We list a few examples to
illustrate the diversity of further research and the significance of the foundational work by Lee and
Yang. A comprehensive overview can be found in [BDL05] and [FR12].
The investigation of modified Ising model is an obvious area of interest in this context. Systems

for which a Lee-Yang theorem has been proven to hold include dilute Ising ferromagnets, where the
possible spin values are in {0,±1} [Suz68], and models with arbitrary even or odd continuous spin
distributions [New74]. The latter is interesting not only for the sake of generality, but also because
some Euclidean quantum fields can be approximated by Ising-like models with continuous spin
distributions [GRS75]. For some spin systems where the spins have more than one component, a
Lee-Yang theorem has been proven, such as for the plane rotator [Dun79]. An interesting approach
is the one by Asano [Asa70a; Asa70b] that led to a Lee-Yang theorem for the Heisenberg model with
one dominant coupling direction, see also [SF71]. The Asano method was generalised by Ruelle to
other regions than the unit circle [Rue71; Rue73]. For Ising models with interactions between more
than two spins, the circle theorem holds up to a certain temperature, but fails already for 4-spin
interactions at high temperatures [Mon91].
The applications extend beyond equilibrium phase transitions. There have been approaches that

explore the extent to which the Lee-Yang method can be applied to non-equilibrium phase transi-
tions [DDH02].

2.4.5 The Lieb-Sokal version of a Lee-Yang theorem

One of the most generally applicable extensions of the Lee-Yang theorem was found by Lieb and
Sokal [LS81]. They could show that for a model of type 2.8(b) with arbitrary spin distributions νi

and ferromagnetic spin-spin interactions Jij ≥ 0, the complexified partition function (2.13) is non-
vanishing for nonzero magnetic field whenever this is the case for the model without interactions.
The theorem can be extended to encompass two-component ferromagnets with arbitrary spin distri-
butions. The subsequent section is entirely devoted to proving this version of a Lee-Yang theorem.
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3 Proof of a Lee-Yang theorem for one- and two-component fer-
romagnets

3.1 Introduction to the theorem and the proof

3.1.1 Remarks on notation

The purpose of this section is to prove the Lee-Yang theorem stated by Lieb and Sokal [LS81].
As we are interested in investigating the occurence of a phase transition when varying the exter-
nal field h at constant inverse temperature β, we investigate the distribution of the zeros of the
partition functions ZG

Λ,β,h in the complex h-plane. We thus drop the indices Λ, β of the partition
function ZG

Λ,β,h and explicitly write out only the dependence of the partition function on the mag-
netic field h = (h1, · · · , hn), where hi is the field at site i. The dependence on Λ and β is of course
still valid. Moreover, we drop the upper index G for better readability.

3.1.2 Proof idea and goal

From Section 2.3 we recall that the partition function of an Ising-like model of the form 2.8(b)
with n spins whose distributions are characterised by probability measures {νi}n

i=1 is given by

Z(h1, · · · , hn) =
∫

exp

 n∑
i,j=1

Jijϕiϕj +
n∑

i=1
hiϕi

 n∏
i=1

dνi(ϕi), (3.1)

where Jij is the interaction coefficient such that Jijϕiϕj equals the contribution of the interaction
of the spins i and j to the Hamiltonian, and hi denotes the external magnetic field at site i. The
prefactor β in the argument of the exponential was absorbed by a rescaling of Jij and hi. The
model is ferromagnetic if the alignment of two interacting spins does not increase the total energy
of the system. This is the case whenever Jij ≥ 0 for all i, j.
Lieb and Sokal were able to prove that a Lee-Yang theorem holds for such models whenever it

holds for the ’free’ partition function

Z0(h1, · · · , hn) =
∫

exp
(

n∑
i=1
hiϕi

)
n∏

i=1
dνi(ϕi), (3.2)

where the interaction coefficients Jij are set to zero. Moreover, Lieb and Sokal showed that for
even measures νi, the condition that all of the measures {νi}n

i=1 satisfiy∫
ehϕdνi(ϕ) ̸= 0 for Re h ̸= 0, (3.3)

is a sufficient condition for the partition function (3.1) to be nonvanishing whenever Re h ̸= 0.
Before we present a proof of this theorem, we briefly outline the key steps.
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The main idea of their proof is to obtain the partition function (3.1) from the free partition
function (3.2) through the identity

Z(h1, · · · , hn) = exp

 n∑
i,j=1

Jij
∂

∂hi

∂

∂hj

Z0(h1, · · · , hn),

and then prove that the differential operator

exp

 n∑
i,j=1

Jij
∂

∂hi

∂

∂hj

 (3.4)

preserves the nonvanishing of Z0(h1, · · · , hn) whenever Re hi > 0 for all i. If the model is symmetric
under a global spin flip (and a simultaneous reversal of the magnetic field),

ϕi → −ϕi and hi → −hi for all i, (3.5)

then it is immediately implied that the partition function has no zeros with negative real part and
that there is no phase transition at nonzero real magnetic field. The symmetry (3.5) manifests itself
in the probability measures {νi}n

i=1. The model has a symmetry under the transformation (3.5) if
and only if all measures νi are even.
Before delving into the details of the proof, we present the Lee-Yang theorem in the form in which

it is proven below. We say that a measure ν has the Lee-Yang property if the free partition function
that it defines as in (3.2) is nonvanishing whenever Re h > 0. The falloff is a technical term that
entails a statement about the exponential order and type of the resulting partition function. It
is not directly relevant to the physical interpretation of the theorem and will therefore not be
explained further at this point.

Theorem. Let {νi}n
i=1 be measures on R1, each having the Lee-Yang property with falloff β. Let J

be a symmetric n × n matrix with nonnegative entries and ∥J∥ < β. Then the measure µ on Rn

given by

dµ(ϕ) = exp

 n∑
i,j=1

Jijϕiϕj

 n∏
i=1

dνi(ϕi)

has the Lee-Yang property with falloff γ for every γ < β−∥J∥ (and γ = ∞ if β = ∞). In particular,
we can let each measure νi be an even measure satisfying∫

ehϕdνi(ϕ) ̸= 0 for Re h ̸= 0.

3.1.3 Overview of the proof

The Lee-Yang theorem that we prove is a consequence of a more general statement about certain
entire functions. Following Lieb and Sokal’s proof, we establish this statement first and then apply
it to the situation described above. Roughly speaking, the statement looks as follows.
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Denote Dn := {z ∈ Cn : Re zi > 0 for all i}. Let f, g be in a suitable class of functions on Cn and
both nonvanishing on Dn. Then f(∂z)g(z) is well-defined and

f(∂z)g(z) ̸= 0 for all z ∈ Dn. (3.6)

The precise formulation of this statement can be found in Proposition 3.10.

Such results were already known for complex polynomials when Lieb and Sokal published their
proof of a Lee-Yang theorem for general ferromagnetic models (see for example pp. 82-84 in [Mar66]
which is cited by Lieb and Sokal, after the proof of their Proposition 2.1). Their approach provides
a generalisation of this result to a class of functions that contains the partition functions of the
above-described models.

To obtain this generalisation, we start by extending the result for polynomials to polynomials in
n complex variables, this is the content of our Proposition 3.1. In Section 3.3, we introduce the
suitable space of functions, it depends on a parameter a ≥ 0 and is denoted by A n

a+. This space
contains entire functions growing more slowly than ebz2 for all b > a. Corollary 3.8 states that for
f, g ∈ A n

a+,A
n

b+ respectively, the formal expression (3.6) gives a well-defined function if ab < 1
4 ,

and this function is in A n
c+ for a suitable c.

One of the central properties of the space A n
a+ is that the polynomials are dense in it. This

property holds great significance as it enables us to derive the desired statement about functions
in A n

a+ from the case of polynomials. In Proposition 3.10 we show that the property (3.6) is
preserved by an approximation by polynomials. The spaces Pn

a+(Dn) will be introduced as the
subspaces of functions in A n

a+ that are approximable by polynomials nonvanishing on Dn, the
product of right half-planes. Clearly, the property (3.6) carries over from polynomials to functions
in Pn

a+(Dn). In particular, Proposition 3.11 shows that for a symmetric matrix J , the function of
interest for a Lee-Yang theorem,

exp

 n∑
i,j=1

Jijϕiϕj

 = lim
k→∞

n∏
i,j=1

(
1 + Jijϕiϕj

k

)k

,

is in Pn
a+(Dn) for any a > ∥J∥ if and only if Jij ≥ 0 for all i, j. This is precisely the situation that

occurs in the partition function of a ferromagnet.

To derive the Lee-Yang theorem, it only remains to show that the free partition function can also
be described in terms of the spaces A n

a+.

To this end, we understand the spin measures νi as distributions in the sense that they act on
functions in the following way,

f 7→
∫
R
f(ϕ)dνi(ϕ).

Clearly, in the context of our application, this operation must be well-defined for functions

f(ϕ) = eJϕ2+hϕ, J ≥ 0, (3.7)
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or more generally, for functions of the form f(ϕ) = eJϕ2+hϕg(ϕ) with J ≥ 0, where g ∈ S (R) is a
Schwartz function. It is thus natural to consider distributions of the form

T = e−βx2
Tβ (3.8)

for some β > 0 and a tempered distribution Tβ, where the action of (3.8) on a function f is
understood as the action of Tβ on the product of f and a function ζβ, where ζβ(x) = e−βx2 ,

T (f) = Tβ(ζβf).

Specifically, if we choose β > J , this gives a well-defined distribution for functions of the form (3.7)
because∣∣∣∣∫

R
f(ϕ)e−βϕ2dνi(ϕ)

∣∣∣∣ ≤ sup
ϕ

(
e−(β−J)ϕ2+hϕ

)
νi(R) < ∞.

A formal definition of the distribution spaces T n
β is given in Section 3.3.3.

The Laplace transform will be used to turn the distributions into functions of a complex variable.
In Lemma 3.15, it is shown that for T ∈ T n

β , the Laplace transform T̂ is in A n
1/4β+, and if, in

addition, T̂ is approximable by polynomials that are nonvanishing on Dn, Proposition 3.16 implies

that the property (3.6) holds for the application of the differential operator exp
(

n∑
i,j=1

Jij
∂

∂hi

∂
∂hj

)
to T̂ .
Once these mathematical statements are proven, it is easy to deduce the Lee-Yang theorem. This

will be done in a general form in Theorem 3.18. Corollary 3.19 is then precisely the Lee-Yang
theorem for the one-component ferromagnet that was presented above. It is only a minor effort
to show that the assumption (3.3) is sufficient to guarantee that the free partition function is
approximable by polynomials nonvanishing in Dn.
The methods can be extended to prove a Lee-Yang theorem for a general two-component ferro-

magnet. The domain where the Laplace transform of a measure does not vanish is different in that
case. It is determined in Proposition 3.22. A change of variables transforms this domain into a
product of two regions Dn, which leads us back to the situation studied in Sections 3.2-3.4. The
previously derived theorems carry over immediately and it follows that a Lee-Yang theorem holds
in terms of the new variables if all interaction coefficients are nonnegative. It is easy to transform
the variables back to those of the two-component ferromagnet partition function and to derive the
conditions on the interaction coefficients under which a Lee-Yang theorem holds by inserting the
nonnegativity of the other interaction coefficients into the transformation. The resulting Lee-Yang
theorem is Corollary 3.25.

3.2 The case of polynomials

We now proceed to presenting the proofs of the outlined ideas. In the preceding paragraph, we
explained that the Lee-Yang theorem can be proven by demonstrating that the differential oper-
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ator (3.4) applied to a suitable function preserves its nonvanishing property in Dn. To establish
this, we will approximate both the differential operator and the function by polynomials, therefore
such a statement needs to be shown to hold for polynomials first. Proving this result, which is our
Proposition 3.1, is the goal of this section.

Proposition 3.1. Let P,Q be polynomials in n complex variables and define for v, w, z ∈ Cn

R(v, w) = P (v)Q(w)

and

S(z) = P (∂/∂z)Q(z).

If R(v, w) ̸= 0 whenever Re v > 0 and Re w > 0, then it holds that S(z) ̸= 0 whenever Re z > 0
or else S(z) is identically zero.

The proof strategy relies on the following identity that allows us to convert the expression for R
into S,

S(w) =
n∏

i=1
exp

(
∂

∂vi

∂

∂wi

)
R(v, w)

∣∣∣∣∣
v=0

.

We will write the exponential in the product as a function and approximate it by products of
degree-one polynomials. The degree-one polynomials will successively be converted into differen-
tial operators by replacing the indeterminate with derivatives. The next lemma shows that this
replacement preserves the nonvanishing of the expression in {z ∈ C : Re z ≥ 0}. We will finish the
proof by arguing that the nonvanishing property carries over when taking the limit of the prod-
uct of polynomials to the exponential, or else the resulting expression vanishes identically. Before
carrying out the proof, we establish the necessary statement for degree-one polynomials.

Lemma 3.2. Let Q0 and Q1 be polynomials in a single complex variable, and assume that R(v, w) =
Q0(w) + vQ1(w) ̸= 0 whenever Re v ≥ 0 and Re w ≥ 0. Then S(z) = Q0(z) +Q′

1(z) ̸= 0 whenever
Re z ≥ 0.

Proof. Five claims will be made and proven first. With the claims, the proof of the lemma is simple.
Claim 1. Q0(z) ̸= 0 whenever Re z ≥ 0.
Proof of Claim 1. Per assumption, R(0, w) ̸= 0 must hold, so Q0(z) ̸= 0 whenever Re z ≥ 0.

If vQ1 ≡ 0, we are done, so we may assume Q1 ̸≡ 0 and v ̸= 0.
Claim 2. Q1(z) ̸= 0 whenever Re z > 0.
Proof of Claim 2. Define R̃(x,w) := xQ0(w) + Q1(w) and set x = 1/v (obviously, R̃ can be

extended to an analytic function in x on all of C). Then R̃(x,w) = 1
vR(v, w) and the zeros (x0, w0) of

R̃ and the zeros (v0, w
′
0) of R are related by (x0, w0) = (1/v0, w

′
0). Note that Re x = Re v/ |v|2 which

implies that Re x and Re v have the same sign. Hence R̃ has no zeros whenever Re x > 0,Re w ≥ 0
per assumption on R.
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Suppose the claim to be false, that is, there exists some z0 with Re z0 > 0 and Q1(z0) = 0. Then
it holds that R̃(0, z0) = 0. Define the polynomials R̃k(w) = R̃(1/k, w). These form a sequence
(R̃k)k∈N of entire functions converging uniformly to R̃(0, ·) on compact subsets K ⊂ C. It is easy to
see the uniform convergence on compacts. Considering that polynomials are bounded on compact
subsets K ⊂ C, we find that for all ε > 0 there exists some k0 ∈ N such that k0 > ε−1max

z∈K
|Q0(z)|.

For all k ≥ k0, this yields

∣∣∣R̃k(z) − R̃(0, z)
∣∣∣ =

∣∣∣∣1kQ0(z)
∣∣∣∣ < ε

for all z ∈ K which proves the uniform convergence on compacts.
Per assumption, z0 is a zero of lim

k→∞
R̃k = R̃(0, ·), therefore by the Hurwitz theorem (Theorem 7.2

in [FB06]), every sufficiently small neighbourhood of (0, z0) contains a zero zk of R̃k for k sufficiently
large. In particular, we can make the neighbourhood so small that Re zk > 0 because Re z0 > 0.
This, however, implies that (k, zk) is a zero of R in the right half-plane D which contradicts the
assumption on R. Therefore, Q1(z0) ̸= 0 whenever Re z0 > 0.

Claim 3. If Q1(z0) = 0 and Re z0 = 0, then Q′
1(z0)

Q0(z0) is real and nonnegative.
Proof of Claim 3. Let Re z0 = 0. If Q1(z0) = 0, then R̃(0, z0) = 0. The implicit function

theorem can be applied to R̃ because ∂xR̃(x,w)|(0,z0) = Q0(z0) ̸= 0 according to Claim 1. It
implies that there is an open neighbourhood U of z0 and an analytic function g : U → R where
x = g(w), R̃(g(w), w) = 0 and ∂wg(w) = −

(
∂xR̃

)−1
∂wR̃|(g(w),w).

Calculating the derivative explicitly yields

∂wg(w) = −
(
∂xR̃

)−1
∂wR̃|(g(w),w) = −g(w)Q′

0(w) +Q′
1(w)

Q0(w) .

Recall that g(z0) = 0 and perform a Taylor expansion up to first order to write

g(z0 + δw) = g(z0) + ∂wg(z0)δw + r = −Q′
1(z0)

Q0(z0)δw + r =: δx,

where r = O(δw2). Suppose Q′
1(z0)

Q0(z0) is not both real and nonnegative. Then it is possible to
choose δw with z0 + δw ∈ U and Re δw > 0 such that −Q′

1(z0)
Q0(z0)δw has positive real part. As |δw|

can be arbitrarily small, the second-order term r is negligible for determining the real part of δx,
so that Re δx > 0 follows.
In U it must hold that R̃(g(w), w) = 0, which implies R̃(g(z0 + δw), z0 + δw) = 0. This yields a

zero of R̃ at (δx, z0 + δw) where both Re δx and Re δw are positive, and therefore a zero of R in
the right half-plane which contradicts the assumption on R. So Q′

1(z0)
Q0(z0) is real and nonnegative.

Claim 4. Re Q0(z)
Q1(z) > 0 whenever Re z ≥ 0 and Q1(z) ̸= 0.

Proof of Claim 4. Suppose that the claim does not hold true. Then there exists a zero of R(v, w)
with Re v ≥ 0 and Re w ≥ 0 by choosing v = −Q0(z)

Q1(z) , contrary to the assumption on R.
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Claim 5. Let Re z ≥ 0 and Q1(z) ̸= 0. Then Re Q′
1(z)

Q1(z) ≥ 0.
Proof of Claim 5. Factor Q1 into

Q1(z) = b
deg Q1∏

j=1
(z − βj),

where βj are the zeros of Q1. Claim 2 shows that Re βj ≤ 0 for all j. Then, as Q1(z) ̸= 0 per
assumption, the quotient

Q′
1(z)

Q1(z) =
deg Q∑
j=1

1
z − βj

is well-defined. Recall that for x ̸= 0, the real part of x has the same sign as Re(x−1), thus every
term of the sum has nonnegative real part and therefore Re Q′

1(z)
Q1(z) ≥ 0.

Proof of the lemma. Now the proof of the lemma is a simple conclusion of the previous claims.
First assume Q1(z) ̸= 0 and Re z ≥ 0. Then

Q0(z) +Q′
1(z) = Q1(z)

(
Q0(z)
Q1(z) + Q′

1(z)
Q1(z)

)
̸= 0,

because Re Q0(z)
Q1(z) > 0 (Claim 4) and Re Q′

1(z)
Q1(z) ≥ 0 (Claim 5).

Now assume Q1(z) = 0. Claim 2 implies that Re z = 0. As Q0(z) ̸= 0 whenever Re z ≥ 0 from
Claim 1, it must hold that

Q0(z) +Q′
1(z) = Q0(z)

(
1 + Q′

1(z)
Q0(z)

)
̸= 0,

because Re Q′
1(z)

Q0(z) ≥ 0 according to Claim 3.

With Lemma 3.2, we are now equipped to prove Proposition 3.1 with the above-outlined proof
strategy. For v ∈ Cn, we introduce the notation Re v > 0 to abbreviate Re vi > 0 for i = 1, · · · , n.

Proof of Proposition 3.1. To prove that the identity

S(w) =
n∏

i=1
exp

(
∂

∂vi

∂

∂wi

)
R(v, w)

∣∣∣∣∣
v=0

holds, we write the polynomial R as a sum of monomials,

R(v, w) =
n∑

l,k=1

degvl
R∑

m1=0

degwk
R∑

m2=0
α(lk)

m1m2v
m1
l wm2

k ,

with coefficients α(lk)
m1m2 ∈ C.
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The differential operator exp
(

∂
∂vi

∂
∂wi

)
is defined by a power series,

exp
(
∂

∂vi

∂

∂wi

)
=
∑

n∈N0

(
∂

∂vi

∂
∂wi

)n

n!

It is easy to see that only finitely many terms of the power series yield a nonzero result when
applied to the polynomial R(v, w).

We first evaluate S(w) so that we can later compare it to the result of the application of the
differential operator to R. The linearity of differentiation allows us to reduce the proof of the
identity to the case that R is a product of monomials in vk, wl. Let therefore R(v, w) = vm1

k wm2
l .

If m1 ≤ m2, then

S(w) = ∂m1

∂wk
m1
wm2

l = δkl m2(m2 − 1) · · · (m2 −m1 + 1)w(m2−m1)
l ,

and otherwise S(w) = 0. On the other hand,

∑
n∈N0

(
∂

∂vi

∂
∂wi

)n

n! vm1
k wm2

l

= δikδil

min{m1,m2}∑
n=0

1
n!m1(m1 − 1) · · · (m1 − n+ 1)vm1−n

k m2(m2 − 1) · · · (m2 − n+ 1)wm2−n
l ,

so that after an evaluation at vk = 0, only the term with n = m1 remains. If m2 < m1, then no
such term exists and the expression vanishes. If, however, m1 ≤ m2, then the remaining term is
given by

δikδil m2(m2 − 1) · · · (m2 −m1 + 1)wm2−m1
l .

In both cases it is equal to the expression for S(w), so that the identity is proven.

Now we return to the proof of the proposition. Suppose R(v, w) ̸= 0 whenever Re v > 0,Re w > 0.
Our goal is to show that the application of this differential operator preserves the nonvanishing of R
in Dn. As in Lemma 3.2, we consider the product of two functions

n∏
i=1

exp (siui)R(v, w) and then

replace the indeterminates in the argument of
n∏

i=1
exp (siui) by partial derivatives to obtain S(w).

For clarity we set F (s, u) =
n∏

i=1
exp (siui) and write

F (s, u)R(v, w) =
n∏

i=1
exp (siui)R(v, w).

We want to prove that after replacing si, ui by ∂vi , ∂wi , the result is nonvanishing on {0}n ×Dn by
a repeated application of Lemma 3.2. The lemma applies to polynomials, therefore we approximate
the exponential by polynomials using exp(x) = lim

m→∞

(
1 + x

m

)m. Note that the approximation is
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uniform on compacts. Explicitly, we write F as the limit of the following polynomials,

F (s, u) = lim
m→∞

(
n∏

i=1

[
1 + siui

m

])m

. (3.9)

The expression can be decomposed into a product of degree-one polynomials. In the resulting form,
we can repeatedly apply Lemma 3.2 to successively convert the variables into derivatives. We define
the degree-one polynomials Pm in the complex variables si and ui by Pm(si, ui) = 1 + m−1siui.
Then F is the limit of polynomials Fm, where

Fm(s, u) :=
(

n∏
i=1

[
1 +m−1siui

])m

=
n∏

i=1
(Pm(si, ui))m .

In order to apply Lemma 3.2, the expression must first be modified such that Fm(s, u)R(v, w) ̸= 0
whenever Re s,Re u,Re v,Re w ≥ 0. Therefore we shift all variables by ε > 0 to obtain

n∏
i=1

(Pm(si + ε, ui − ε))mR(v + ε, w + ε). (3.10)

Denote R(ε)(v, w) := R(v + ε, w + ε). Then R(ε) is nonvanishing whenever Re v ≥ 0,Re w ≥ 0
per assumption on R.

Moreover, we claim that there are no zeros of Pm(s, u) := (1+m−1(s)(u)) with Re s > 0,Re u > 0.
To see this, suppose the claim is false and there is a zero (s0, u0) of the polynomial Pm where we
write s0 = a+ ib, u0 = c+ id with a, c > 0. Then

0 = Pm(s0, u0) = (1 +m−1(a+ ib)(c+ id)) = 1 +m−1 [(ac− bd) + i (ad+ bc)] .

Both the real and imaginary part of this expression must vanish separately. Solving the resulting
equation for the imaginary part yields d = − bc

a . After inserting this d into the equation for the real
part, we see that such a zero must satisfy

ma = −c(b2 + a2).

However, this leads to a contradiction because m ∈ N and we assumed that a and c are positive.
Hence, Pm(s, u) := (1+m−1(s)(u)) ̸= 0 whenever Re s > 0,Re u > 0 and it follows that P (ε)

m (s, u) :=
Pm(s+ ε, u+ ε) is nonvanishing whenever Re s ≥ 0,Re u ≥ 0.

The next step is to convert the variables into derivatives and apply Lemma 3.2. We therefore fix
(vj)j ̸=i, (wj)j=1,··· ,n, ui with nonnegative real part and write

P (ε)
m (si, ui)R(ε)(v, w) = 1 +m−1(si + ε)(ui + ε))R(ε)(v, w)

=
(
1 +m−1(εui + ε2)R(ε)(v, w)

)
︸ ︷︷ ︸

=:Q0(vi)

+ si

(
m−1(ui + ε)R(ε)(v, w)

)
︸ ︷︷ ︸

=:Q1(vi)

.
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It is obvious that Q0(vi) + siQ1(vi) ̸= 0 whenever Re vi,Re si ≥ 0 because this holds for both P (ε)

and R(ε). Now Lemma 3.2 can be applied to show that

P (ε)
m (∂vi , ui)R(ε)(v, w) ̸= 0

whenever Re vi ≥ 0 for the values of (vj)j ̸=i, (wj)j=1,··· ,n, ui that were fixed above. These were
arbitrary, therefore

P (ε)
m (∂vi , ui)R(ε)(v, w) ̸= 0

whenever Re v,Re w,Re ui ≥ 0.

In the resulting expression, we fix (vj)j=1,··· ,n, (wj)j ̸=i with nonnegative real part and rearrange

P (ε)
m (∂vi , ui)R(ε)(v, w) =

(
1 +m−1(ε∂vi + ε2)R(ε)(v, w)

)
︸ ︷︷ ︸

=:q0(wi)

+ ui

(
m−1(∂vi + ε)R(ε)(v, w)

)
︸ ︷︷ ︸

=:q1(wi)

.

As before, it holds that q0(vi) + uiq1(vi) ̸= 0 whenever Re vi,Re ui ≥ 0. Lemma 3.2 implies that

P (ε)
m (∂vi , ∂wi)R(ε)(v, w) ̸= 0

whenever Re wi ≥ 0 and, by the same reasoning as above, the expression is nonvanishing whenever
Re v,Re w ≥ 0.

So far, (3.10) has been transformed to

n∏
j=1
i ̸=j

(Pm(sj + ε, uj + ε))m (Pm(si + ε, ui + ε))m−1 P (ε)
m (∂vi , ∂wi)R(v + ε, w + ε),

which is still nonzero whenever Re v,Re w,Re s,Re u ≥ 0. The previous procedure can be repeated
to convert the remaining factors that contain polynomials Pm successively into derivatives. After
each step, it holds that the expression is nonzero whenever Re v,Re w,Re s,Re u ≥ 0. In particular,

n∏
j=1
i ̸=j

P (ε)
m (∂vi , ∂wi)mR(v + ε, w + ε)

∣∣∣
v=0

̸= 0.

Therefore, (3.10) can be converted into(
n∏

i=1

[
1 +m−1

(
∂

∂vi
+ ε

)(
∂

∂wi
+ ε

)])m

R(ε)(v, w), (3.11)

which is nonzero whenever Re v,Re w ≥ 0. Finally, as R is a polynomial, the application of products
of differential operators of the form a+c∂vi , b+d∂wi (where a, b, c, d are arbitrary complex numbers)
on R yields a polynomial. If a sequence of polynomials converges to some limit, it converges
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uniformly on compacts. Therefore, the Hurwitz theorem applies and shows that either

S(ε)(w) := lim
m→∞

({
n∏

i=1

[
1 +m−1

(
∂

∂vi
+ ε

)(
∂

∂wi
+ ε

)]}m)
R(v + ε, w + ε)

∣∣∣∣∣
v=0

̸= 0

whenever Re w > 0, or else the expression vanishes identically. We can use the Hurwitz theorem
again to show that S(ε)(w) can vanish identically for some ε > 0 only if it vanishes for all ε > 0. The
convergence of (3.11) in the limit ε → 0 is also uniform on compacts since the resulting polynomials
will converge to the corresponding expression in non-shifted variables, and this is still true when
we take ε to be a complex variable. We can therefore exchange the limits m → ∞ and ε → 0
and see that S(ε)(w) → S(w). Define Sm(w, ε) by (3.11). We know that Sm(w, ε) ̸= 0 whenever
Re w ≥ 0 and Re ε > 0 (the imaginary part of ε can be thought of as a shift in the imaginary
part of v and w, and since we can choose the imaginary part of v and w in the above arguments
arbitrarily, the nonvanishing holds true for any such purely imaginary shift). If now (w, ε0) is a
zero of lim

m→∞
Sm for some ε0 with Re ε0 > 0 and Re w > 0, then by the Hurwitz theorem it follows

that lim
m→∞

Sm ≡ 0. In particular, S(ε)(w) vanishes identically for some ε > 0 only if it vanishes
identically for all ε > 0.

If S(ε) is already identically zero for every ε > 0, then this will also be the case in the limit ε → 0
and the proposition is proven. Else we can apply the Hurwitz theorem again to show that either

S(w) = lim
ε→0

S(ε)(w) ̸= 0

whenever Re w > 0, or else S ≡ 0.

3.3 Generalisation to a class of entire functions

3.3.1 The space A n
a+ and its properties

In the first part of this section, the space A n
a+ is introduced and some properties of its functions

are discussed. It will be shown that the polynomials are dense in it. We will use this property
in Section 3.3.2 to derive Proposition 3.10, which is an analogue of Proposition 3.1, by employing
approximations with polynomials.

Definition 3.3. Let f be an entire function and b > 0. Define

∥f∥b = sup
z∈Cn

{
exp

(
−b

n∑
i=1

|zi|2
)

|f(z)|
}
.

For a ≥ 0, let A n
a+ be the space of entire functions such that ∥f∥b < ∞ for all b > a. Equipped

with a countable family of norms (∥·∥b)b∈Q∩{b>a}, this is a Fréchet space (for a reminder of the
definition and some facts about Fréchet spaces, see Section A in the appendix).
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Functions in A n
a+ are entire functions, hence they can be represented by the power series

f(z) =
∑

k∈Nn
0

αkz
k.

The Cauchy integral fomula yields a useful estimate for the power series coefficients αk of a function
with finite ∥·∥b-norm.

Lemma 3.4. Let b > 0 and f be an entire function such that ∥f∥b < ∞. For the coefficients in
the power series expansion

f(z) =
∑

k∈Nn
0

αkz
k

it holds that

|αk| ≤ ∥f∥b

n∏
i=1

(2eb
ki

)ki/2
.

Proof. The lemma will be shown for n = 1 first.

It is clear that αk = f (k)(0)
k! (see for example Theorem III.2.2 in [FB06]). Using the Cauchy integral

formula, write the kth derivative as

f (k)(0) = k!
2πi

∮
γ

f(w)
wk+1 dw = k!

2πi

∫ 1

0

f(γ(t))
γ(t)k+1 γ̇(t) dt.

Choosing the curve γ of the form γ(t) = z0 + re2πit with t ∈ [0, 1) and |z0| < r, it holds that
γ̇(t) = 2πire2πit. We can choose z0 = 0, then

∣∣∣f (k)(0)
∣∣∣ ≤ k!

2πrk+1

∣∣∣ ∫
|w|=r

f(w) dw
∣∣∣. (3.12)

Clearly,

sup
|w|=r

e−b|w|2 |f(w)| ≤ sup
w∈C

e−b|w|2 |f(w)| = ∥f∥b ,

which shows

sup
|w|=r

|f(w)| ≤ ebr2 ∥f∥b . (3.13)

Therefore, using the standard estimate for complex curve integrals (Remark II.1.5.2 in [FB06]),
∣∣∣∫

γ

f(w) dw
∣∣∣ ≤ L(γ)sup

γ
|f(w)| ,
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it follows that, using (3.12) and (3.13),

∣∣∣f (k)(0)
∣∣∣ ≤ k!ebr2 ∥f∥b

1
rk
. (3.14)

This bound must hold for all r > 0. We determine the value of r for which it is minimised.
A simple calculation shows

d
dr
ebr2

rk
=
( −k
rk+1 + 2br

rk

)
ebr2

,

which vanishes if and only if r =
√

k
2b . Inserting this value of r into (3.14) yields

∣∣∣f (k)(0)
∣∣∣ ≤ k! ∥f∥b

(2b
k

)k/2
,

and therefore |αk| ≤ ∥f∥b

(
2b
k

)k/2
.

The generalisation to higher n is proven analogously to the above proof, noting that the power
series of an entire function in multiple variables can be written as

f(z) =
∞∑

k1,··· ,kn=0
ck1,··· ,knz

k1
1 · · · zkn

n ,

where

ck1···kn = 1
(2πi)n

∫
∂γ1

· · ·
∫

∂γn

f(w1, · · · , wn)
wk1+1

1 · · ·wkn+1
n

dw1 · · · dwn.

This follows from repeated application of the Cauchy integral formula, see Theorem [Fre14] V.2.2.

The next proposition summarises some properties of functions in the spaces A n
a+.

Proposition 3.5. For all a ≥ 0, the space A n
a+ has the following properties.

(a) A n
a+ is closed under differentiation.

(b) A bounded sequence fj in A n
a+ converges pointwise to f ∈ A n

a+ if and only if it converges to f
in the topology of A n

a+.

(c) For f ∈ A n
a+, the partial sums of the Taylor series of f converge to f in the topology of A n

a+.

Proof. First we prove (a) which is a direct consequence of the Cauchy integral formula. The proof
will be given for n = 1 only. As in the proof of Lemma 3.4, the generalisation to higher n is
straightforward. Let a ≥ 0 and f ∈ A n

a+. We write, using the Cauchy integral formula,

f (k)(z) = k!
2πi

∮
γ

f(w)
(w − z)k+1 dw = k!

2πi

∫ 1

0

f(γ(t))
(γ(t) − z)k+1 γ̇(t) dt.
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Let b > a. Then

∣∣∣f (k)(z)
∣∣∣ e−b|z2| = k!

2π

∣∣∣∣∣∣
∫ 1

0

f(γ(t))e−b|z2|

(γ(t) − z)k+1 γ̇(t) dt

∣∣∣∣∣∣ .
As f ∈ A n

a+, it must hold that

sup
t∈[0,1]

f(γ(t))e−b|z|2 = sup
t∈[0,1]

f(γ(t))e−b|γ(t)|2e−b(|z|2−γ(t)2) ≤ ∥f∥b sup
t∈[0,1]

e−b(|z|2−|γ(t)|2).

Inserting this into the estimate of
∣∣∣f (k)(z)

∣∣∣ yields

∣∣∣f (k)(z)
∣∣∣ e−b|z2| ≤ k!

2π ∥f∥b

∫ 1

0

∣∣∣∣∣e−b(|z|2−|γ(t)|2)

(γ(t) − z)k+1 γ̇(t)
∣∣∣∣∣ dt,

and this must hold for any closed smooth curve γ such that z is contained in the area bounded
by γ in the complex plane. In particular, we may choose γ(t) = z + e2πit. For this curve, it holds
that |z| − 1 ≤ |γ(t)| ≤ |z| + 1 and therefore e−b(|z|2−|γ(t)|2) ≤ eb. Also,

∣∣∣∣ γ̇(t)
(γ(t) − z)k+1

∣∣∣∣ =
∣∣∣∣∣ 2πie2πit

e(k+1)2πit

∣∣∣∣∣ =
∣∣∣2πe−k2πit

∣∣∣ = 1,

which shows that

∣∣∣f (k)(z)
∣∣∣ e−b|z2| ≤ k!

2π ∥f∥b

∫ 1

0

∣∣∣∣∣e−b(|z|2−|γ(t)|2)

(γ(t) − z)k+1 γ̇(t)
∣∣∣∣∣ dt ≤ k! ∥f∥b e

b,

and therefore∥∥∥f (k)
∥∥∥

b
= sup

z∈C

∣∣∣f (k)(z)
∣∣∣ e−b|z2| ≤ k! ∥f∥b e

b < ∞.

This implies that f (k) ∈ A n
a+.

To prove (b), let (fj)j∈N be a bounded sequence in A n
a+ and assume fj(z) → f(z) pointwise.

Recall that sequence in a Fréchet space is bounded if sup
j∈N

∥fj∥b < ∞ for all norms ∥·∥b, and that a

sequence converges to some limit f in the topology of the Fréchet space if ∥fj − f∥b → 0 as j → ∞.
For all b > a and z ∈ Cn, it is obviously true that

exp
(

−b
n∑

i=1
|zi|2

)
≤ 1,

and therefore ∥fj − f∥n ≤ sup
z∈Cn

|f(z) − fj(z)| → 0. It remains to show that the pointwise limit f

with f(z) = lim
j→∞

fj(z) defines an entire function.

Again, we may assume n = 1, the generalisation to higher n follows with the same arguments as
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in Lemma 3.4. Let z ∈ C. For k ∈ N, we again use the Cauchy integral formula to write

f
(k)
j (z) = k!

2πi

∮
γ

fj(w)
(w − z)k+1 dw = k!

2πi

∫ 1

0

fj(γ(t))
(γ(t) − z)k+1 γ̇(t) dt

for a suitable curve γ. As z lies in the interior of the area bounded by γ in the complex plane,
there is some d > 0 such that

∣∣∣(γ(t) − z)k+1
∣∣∣ ≥ d for all t. Moreover, for any b > a, it is clearly

true that sup
w∈γ

|fj(w)| ≤ sup
w∈γ

∥fj∥b e
b|w|2 .

For sufficiently large r, the curve γ is contained in
{
re2πit : t ∈ [0, 1]

}
, so that

sup
w∈γ

|fj(w)| ≤ ∥fj∥b e
br2

< ∞

holds for all j. Denote M := sup
t∈[0,1]

|γ̇(t)| < ∞. It follows that

∣∣∣∣ fj(γ(t))
(γ(t) − z)k+1 γ̇(t)

∣∣∣∣ ≤
M ∥fj∥b e

br2

dk+1 ≤ sup
j∈N

∥fj∥b

Mebr2

dk+1 for all t ∈ [0, 1] ,

where the right side is clearly integrable on [0, 1] because the boundedness of the sequence (fj)j∈N

implies that sup
j∈N

∥fj∥b < ∞. The dominated convergence theorem can thus be applied to interchange

the limit and the integral in

f (k)(z) = lim
j→∞

f
(k)
j (z) = lim

j→∞

k!
2πi

∮
γ

fj(w)
(w − z)k+1 dw,

which proves the existence of f (k).
For the converse, first assume that fj is a bounded sequence converging to 0 in the topology

of A n
a+. Then ∥fj∥b → 0 for all b > a as j → ∞, and therefore

|fj(z)| ≤ exp
(
b

n∑
i=1

|zi|2
)

∥fj∥b .

Given that ∥fj∥b → 0 as j → ∞, pointwise convergence follows.
If fj → f and f ̸= 0, we can replace fj by fj − f and apply the same arguments to fj − f .
Finally, (c) is a consequence of (b), because for any entire function f , the series of partial sums of

the Taylor series converges pointwise to f everywhere. To see that the sequence is also bounded,
denote by pm the partial sum up that includes m terms. The partial sums are polynomials and for
any b > a it obviously holds that ∥pm∥b ≤ ∥f∥b, and therefore sup

m∈N
≤ ∥pm∥b < ∞, which implies

the boundedness of the sequence.

A direct consequence of Proposition 3.5(c) and an important property of the spaces A n
a+ is the

next corollary.

Corollary 3.6. For every a ≥ 0, the polynomials are dense in A n
a+.
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3.3.2 The case of functions in A n
a+

The first goal of this paragraph is to prove a statement that generalises Proposition 3.1 to be
applicable to functions in A n

a+. For entire functions f, g on Cn with power series f(z) = ∑
m∈Nn

0

αmz
m

and g(z) = ∑
m∈Nn

0

βmz
m, conditions are derived that guarantee the well-definedness of the formal

power series

[f(∂)g] =
∑

k,m∈Nn
0

αkβm(∂k/∂zk)zm. (3.15)

For f, g ∈ A n
a+,A

n
b+ respectively, the power series (3.15) is in fact in A n

c+ for some c (which depends
on a and b), this is our Corollary 3.8. Finally, by an approximation of (3.15) with polynomials
that are nonvanishing whenever z ∈ Dn, we arrive at an analogue of Proposition 3.1, because the
nonvanishing in Dn is preserved by the approximation. This analogue is our Proposition 3.10.
The second goal is to show that the function of interest for the Lee-Yang theorem,

f(z) = exp

 n∑
i,j=1

Jijzizj

 with Jij ≥ 0,

is in A n
a+. This is done in Proposition 3.11.

We start by identifying conditions under which the power series (3.15) is well-defined.

Proposition 3.7. Let a, b > 0, ab < 1
4 and c > b/(1 − 4ab). Let f, g be entire functions on Cn with

∥f∥a , ∥g∥b < ∞. Then the series

[f(∂)g] =
∑
k,m

αkβm(∂k/∂zk)zm

is absolutely convergent for all z and it defines an entire function such that ∥f(∂)g∥c ≤ K ∥f∥a ∥g∥b

for some K < ∞ that depends on a, b, c and n, and is independent of f, g.

Proof. Let f be an entire function such that ∥f∥a < ∞ and g be an entire function such that
∥g∥b < ∞. From Lemma 3.4 recall that

|αk| ≤ ∥f∥a

n∏
i=1

(2ea
ki

)ki/2
,

and

|βm| ≤ ∥g∥b

n∏
i=1

(2eb
mi

)mi/2
.

There exists a constant C1 > 0 such that (k/2e)k/2 ≥ C1Γ((k+1)/2) (see for example [Rob55]), it
follows that, by combining the products of the constants C1 for different i to a new constant C2 > 0,
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the following estimates hold,

|αk| ≤ C2 ∥f∥a

n∏
i=1

aki/2

A(ki)
, (3.16)

and

|βm| ≤ C2 ∥g∥b

n∏
i=1

bmi/2

A(mi)
,

where we defined A(0) = 1 and A(2s+ 1) = A(2s+ 2) = s! for s ∈ N.

Introduce the entire functions h, l on C, where

h(z) = 1 + (z + z2) exp(az2), l(z) = 1 + (z + z2) exp(bz2).

The (everywhere absolutely convergent) power series of h is

1 + (z + z2) exp(az2) = 1 + (z + z2)
∑

n∈N0

anz2n

n! = 1 +
∑

n∈N0

anz2n+1

n! +
∑

n∈N0

anz2n+2

n!

= z0

A(0) + 1
a1/2

∑
n∈N0

(
a1/2z

)2n+1

A(2n+ 1) + 1
a

∑
n∈N0

(
a1/2z

)2n+2

A(2n+ 2) ,

because a > 0 per assumption. For z real and nonnegative, we may bound the power series of h
from below,

h(z) = z0

A(0) + 1
a1/2

∑
n∈N0

(
a1/2z

)2n+1

A(2n+ 1) + 1
a

∑
n∈N0

(
a1/2z

)2n+2

A(2n+ 2) ≥ C3
∑

n∈N0

an/2

A(n)z
n,

where C3 = min
{

1, a−1/2, a−1
}
> 0. Then

|f(∂)g(z)| ≤
∑
k,m

|αk| |βm|
∣∣∣(∂/∂zk)zm

∣∣∣ |f(∂)g(z)|

≤ (C2)2 ∥f∥a ∥g∥b

∑
k,m

n∏
i,j=1

aki/2

A(ki)
bmi/2

A(mi)
∣∣∣(∂/∂zki

i )zmi
i

∣∣∣
≤
(

C2
(C3)n

)2
∥f∥a ∥g∥b

n∏
i=1

[h(∂w)l] (w)
∣∣∣
w=|zi|

.

Hence the proposition reduces to showing that [h(∂)l] (z) is a well-defined entire function for real
and nonnegative z ∈ C.

The evaluation of the series (3.15) for h, l can be done explicitly. We perform it to show that it
represents a well-defined entire function. The constant terms can be ignored. For the evaluation of

[h(∂/∂z)l] (z) =
(
∂/∂z + ∂2/∂z2

)
exp

(
a∂2/∂2z

) (
z + z2

)
exp

(
bz2
)
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we apply the differential operator exp
(
a∂2/∂2z

)
first. For x ∈ R, we use a standard Gaussian

integral to write

exp(ax2) = C4

∫ ∞

−∞
exp

(
− t2

a
+ 2tx

)
dt, (3.17)

where C4 = (πa)−1/2, and use this formally with x = ∂/∂z. We also use the identity

exp(2t∂/∂z)l(z) = l(z + 2t), (3.18)

which is proven in Lemma B.1 of the appendix, to write

exp(a∂2/∂z2)
[
(z + z2) exp(bz2)

]
= C4

∫ ∞

−∞
exp

(
− t2

a
+ 2t∂z

)
dt
[
(z + z2) exp(bz2)

]
= C4

∫ ∞

−∞
((z + 2t) + (z + 2t)2) exp

(
− t2

a
+ b(z + 2t)2

)
dt

= P1(a, b; z) exp(c′z2).

In the first step, we inserted (3.17), and in the second step, we used (3.18). The prefactor c′ =
b/(1 − 4ab) > 0 in the exponential comes from the Gaussian integral

∫ ∞

−∞
exp

(
− t2

a
+ b(z + 2t)2

)
dt =

∫ ∞

−∞
exp

(
−
(1
a

− 4b
)
t2 + 4bzt+ bz2

)
dt

= C4 exp
(

bz2

1
4ab − 1

+ bz2
)

= C4 exp
(

b

1 − 4abz
2
)
,

and C4 is a constant that depends on a, b. The convergence of this integral is guaranteed by the
assumption ab < 1

4 . The polynomial prefactor in the integrand can be taken care of with partial
integration. This yields the polynomial P1(a, b; ·) with coefficients depending on a, b as a prefactor.
P1 is quadratic in z. By simply applying the remaining derivatives

(
∂/∂z + ∂2/∂z2), we get(

∂/∂z + ∂2/∂z2
)

exp(a∂2/∂2z)
[
(z + z2) exp(bz2)

]
=
(
∂/∂z + ∂2/∂z2

)
P1(a, b; z) exp

(
b

1 − 4abz
2
)

= P2(a, b; z) exp(c′z2),

where P2 is a quartic polynomial with coefficients depending on a, b only.
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It follows that ∥h(∂)l∥γ < ∞ for all γ > c′. Thus for c > b
1−4ab it must hold that

∥f(∂)g(z)∥c = sup
z∈Cn

exp
(

−c
n∑

i=1
|zi|2

)
|f(∂)g(z)|

≤
(

C2
(C3)n

)2
∥f∥a ∥g∥b

n∏
i=1

sup
z∈C

{
exp

(
−c |z|2

)
[h(∂)l] (|z|)

}
= K ∥f∥a ∥g∥b ,

where K = (C2/(C3)n)2 ∥h(∂)l∥n
c < ∞.

With the previous proposition it is easy to prove that the power series (3.15) for functions f, g in
our spaces A n

a+,A
n

b+ respectively is again in such a class of entire functions.

Corollary 3.8. The map (f, g) 7→ f(∂)g is a continuous bilinear map from A n
a+ × A n

b+ into
A n

b/(1−4ab)+ for any a, b ≥ 0 with ab < 1
4 .

Proof. The bilinearity of the map is clear. Let f ∈ A n
a+, g ∈ A n

b+ and c′ > b/(1 − 4ab). Pick
a′ > a, b′ > b such that a′b′ < 1

4 and c′ > b′/(1−4a′b′) (it is possible to check that such a′, b′, exist).
From Proposition 3.7 we know that

∥f(∂)g∥c′ ≤ K ∥f∥a′ ∥g∥b′ ,

so that well-definedness and continuity of the map both follow.

Next, we define the subset of A n
a+ that is approximable by polynomials which are nonvanishing

on some subset A ⊂ Cn. We will mainly be using A = Dn.

Definition 3.9. Let A ⊂ Cn, denote by Pn(A) be the set of polynomials on Cn which are
nonvanishing on A and let Pn

a+(A) be the closure of Pn(A) in A n
a+.

The Hurwitz theorem says that the functions in Pn
a+(A) must either be nonvanishing in the

interior of A or identically zero. This is not necessarily true for all functions in A n
a+ (for an

example, see Proposition 3.11), so that in general Pn
a+(A) ⊊ A n

a+.
The following proposition is the desired extension of Proposition 3.1 to functions in A n

a+.

Proposition 3.10. Let a, b ≥ 0, ab < 1
4 , let f ∈ Pn

a+(Dn), g ∈ Pn
b+(Dn). Then

h(z) = f(∂/∂z)g(z) ∈ Pn
b/(1−4ab)+(Dn).

Proof. For f, g ∈ Pn(Dn), Proposition 3.1 immediately implies that f(∂/∂z)g(z) ∈ Pn(Dn). Let
f ∈ Pn

a+(Dn), g ∈ Pn
b+(Dn). Then there are sequences (fk)k∈N, (gk)k∈N with fk, gk ∈ Pn(Dn) and

fk → f, gk → g in the respective spaces. From Proposition 3.1 we know that fk(∂/∂z)gk ∈ Pn(Dn).
Finally, lim

k→∞
fk(∂/∂z)gk ∈ Pn

b/(1−4ab)+(Dn) follows from Corollary 3.8.
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The next proposition shows that the relevant function for the differential operator (3.4) in our
application,

f(z) = exp

∑
i,j

Jijzizj


with Jij = Jji ≥ 0, is in Pn

∥J∥+(Dn).

Proposition 3.11. Let B be a complex n × n symmetric matrix and f(z) = exp
(∑

i,j
Bijzizj

)
.

Then the following are equivalent:

(a) Bij ≥ 0 for all i, j.

(b) f ∈ Pn
∥B∥+(Dn) where ∥B∥ is the norm of B considered as a bilinear form on Cn or Rn

equipped with the Euclidean norm.

(c) There exist polynomials {Pi}i∈N in Pn(Dn) converging pointwise to f.

Proof. We first prove that (a) implies (b). Note that

exp (Bijzizj) = lim
k→∞

(
1 + k−1Bijzizj

)k
,

and that therefore

f(z) = lim
k→∞

n∏
i,j=1

(
1 + k−1Bijzizj

)k
,

We set

pk(z) :=
n∏

i,j=1

(
1 + k−1Bijzizj

)k

Since Bij ≥ 0, the polynomials pk are all nonzero in Dn. We thus obtain a sequence of polynomials
in Pn(Dn) converging pointwise to f . Using that (1 + x

k )k ↗ ex as k → ∞ for x ≥ 0 yields

|pk(z)| ≤
n∏

i,j=1

(
1 + k−1Bij |zi| |zj |

)k

≤ exp
(

n∑
i=1
Bij |zi| |zj |

)

≤ exp
(

∥B∥
n∑

i=1
|zi|2

)
.

The last inequality follows from the fact that for the bilinear form (·, B·) it holds that |(z,Bz)| ≤
∥B∥ ∥z∥2 where ∥z∥2 =

n∑
i=1

|zi|2. This implies the boundedness of the sequence in A n
∥B∥+. The

convergence in A n
∥B∥+ is then obtained from Proposition 3.5(b). It follows that f ∈ Pn

∥B∥+(Dn).
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It is easy to see that (c) follows from (b) because convergence in Pn
∥B∥+(Dn) implies pointwise con-

vergence for any bounded sequence. A sequence of polynomials is obviously bounded (recall A.2),
this proves the implication.
It remains to show that (c) implies (a). We fix (z2, · · · , zn) ∈ Dn−1, rename z1 → z and rearrange f

to get a function

f̂(z) = C exp

B11z
2 +

2
n∑

j=2
B1jzj

 z
 ,

where C depends on B and on z2, · · · , zn, but not on z. Per assumption, there exist polynomials
{Pi}i∈N in Pn(Dn) converging pointwise to f . By fixing (z2, · · · , zn) ∈ Dn−1, we can turn the
polynomials in n complex variables {Pi}i∈N into polynomials in one complex variable, {Qi}i∈N

in P1(D1), that converge pointwise to f̂ .
Let z, z′ ∈ C such that Re z ≥ |Re z′| and Im z = Im z′. Then Qi ∈ P1(D1) implies |Qi(z)| ≥

|Qi(z′)| and this inequality is preserved in the limit lim
i→∞

Qi = f̂ . From the form of f̂ , it is easy

to see that this implies B11 ≥ 0 and Re
n∑

j=2
B1jzj ≥ 0. This holds for all (z2, · · · , zn) ∈ Dn−1 so

B1j ≥ 0 for 2 ≥ j ≥ n. Analogously we can show Bij ≥ 0 for all i, j. This completes the proof.

3.3.3 Distribution spaces

From the introduction to the proof, recall that our spin measures µ act as linear functionals on
functions in the obvious way,

f 7→
∫
Rn
f(ϕ)dµ(ϕ).

We can therefore regard the measures as distributions. For our purpose of expressing the partition
function (3.1) in terms of these distributions, the action of the distributions on functions of the form
f(ϕ) = e(ϕ,Jϕ)+hϕ with Jij ≥ 0 needs to be well-defined. The distributions will therefore be chosen
to be of a certain form. In this section, the corresponding distribution spaces T n

a are defined.
The Laplace transform is introduced as a tool to transform the measures into entire functions. In
Lemma 3.15, we show that the Laplace transform T̂ of any distribution T ∈ T n

a is in A n
1/4a+.

Finally, Proposition 3.16 proves that the application of a differential operator of the form f(∂/∂z),
where f ∈ Pn

a+(Dn), to a distribution T with Laplace transform T̂ ∈ Pn
b+(Dn) is in Pn

c+(Dn) for
a suitable c. In particular, it preserves the nonvanishing of T̂ in Dn.

Definition 3.12. For a > 0, let ζa(x) := exp
(

−a
n∑

i=1
x2

i

)
and ηa(x) = exp

(
a

n∑
i=1
x2

i

)
. Define T n

a

to be the space of distributions T on Rn such that for any function g,

T (g) = Ta(ζag)

for a tempered distribution Ta.
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Equip T n
a with the weak topology generated by the test functions

f(x) = ηa(x)fa(x)

with fa ∈ S (Rn) where S (Rn) denotes the Schwartz space. That is, a sequence of distributions
T (j) ∈ T n

a converges to T ∈ T n
a if and only if the distributions T (j)

a from the above definition
converge to Ta in the usual weak topology of the dual space S ′(Rn). We point out that weak and
strong convergence are equivalent in S ′(Rn) (see Theorem V.26 in [RS72]).
Also, we define T n

∞ = ⋂
a>0

Ta with the topology in which a set is open in T n
∞ if and only if it is

open in the topology of T n
a for all a > 0.

We will need the following tool to map distributions to functions in a complex variable.

Definition 3.13. Let a > 0 and T ∈ T n
a . For z ∈ C define η̃z(x) = ezx. The function η̃z is an

admissible test function for T because x 7→ η̃z(x)ζa(x) = ezxe−ax2 is a Schwartz function. Then
the Laplace transform is well-defined, and it is defined by

T 7→ T̂ where T̂ (z) = T (η̃z).

The Laplace transform is a more general concept (see for instance [Dav02]), but for the purpose
of this thesis it is sufficient to define it only for distributions in T n

a . The relevant properties of the
Laplace transform for us are discussed in Lemma 3.15. For the proof of Lemma 3.15, we need the
following lemma.

Lemma 3.14. Let k ∈ Nn
0 with |k| = N , M ∈ N0, z ∈ Cn and fz(x) = exp

(
zx− ax2). Then

there is a constant C (dependent on M,N) such that the following inequality holds

sup
x∈Rn

(
1 + |x|M

) ∣∣∣∂k
xfz(x)

∣∣∣ ≤ C
(
1 + |z|N+M+1

)
exp

(
|z|2

4a

)
.

The proof involves lengthy calculations that are not directly relevant to the technical procedure
for proving the Lee-Yang theorem. Therefore, we defer it to Section C in the appendix.
The next lemma states an important property of the Laplace transform.

Lemma 3.15. Let 0 < a ≤ ∞. Then the Laplace transform is a sequentially continuous linear
map of T n

a into A n
1/4a+. Equivalently, if a sequence T (j) converges to T in T n

a , then T̂ (j) converges
to T̂ in A n

1/4a+.

Proof. The linearity of the map T 7→ T̂ follows from the linearity of distributions.
To prove sequential continuity, assume first that 0 < a < ∞. Then for T ∈ T n

a there is a tempered
distribution Ta ∈ S ′(Rn) such that T̂ (z) = Ta(fz) where fz(x) = exp(zx−ax2). Since Ta ∈ S ′(Rn),
it follows directly from Theorem V.10 in [RS72] or Theorem 7.2.1 in [CMÖ21] that there exist
M,N ∈ N0 such that

|Ta(fz)| ≤ K sup
x∈Rn

(
1 + |x|M

) ∑
|k|≤N

∣∣∣∂kfz(x)
∣∣∣ (3.19)
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for some K dependent on M,N . From Lemma 3.14 we know that the inequality

(
1 + |x|M

) ∣∣∣∂kfz(x)
∣∣∣ ≤ C

(
1 + |z||k|+M+1

)
exp

(
|z|2

4a

)
(3.20)

holds for a suitable constant C depending on M, |k| and a. Hence T̂ ∈ A n
1/4a+.

Now consider a sequence (T (j))j∈N in T n
a that converges to T ∈ T n

a . Let
(
T

(j)
a

)
j∈N

, Ta ∈ S ′(Rn)

such that T̂ (j)(z) = T
(j)
a (fz) and T̂ (j)(z) = Ta(fz).

For z ∈ Cn, let gz,b(x) = exp
(
zx− ax2 − b |z|2

)
= exp

(
−b |z|2

)
fz(x). We will use that for all b,

the linearity of T implies that

exp
(
−b |z|2

)
T̂ (z) = Ta(gz,b). (3.21)

In particular, the functions gz,b are admissible test functions for T (j)
a and Ta.

To prove that T̂ (j) → T̂ in the topology of A n
1/4a+, we need to show that

sup
z∈Cn

{∣∣∣T (j)
a (gz,b) − Ta(gz,b)

∣∣∣} → 0 for all b > 1
4a. (3.22)

We therefore fix b > 1
4a . To prove (3.22), we use the equivalence of weak and strong convergence

in S ′(Rn), because this implies that T (j)
a (gz,b) → Ta(gz,b). The inequality (3.19) together with the

(yet to be proven) fact that {gz,b}z∈Cn is a bounded family in S (Rn) shows that the convergence of
T̂ (j)(z) to T̂ (z) is uniform. This proves (3.22). It follows that T̂ (j) → T̂ in the topology of A n

1/4a+.

To prove the boundedness of {gz,b}z∈Cn , note that equipped with the topology induced by the semi-
norms ∥f∥k,m := sup

x∈Rn

{∣∣∣xk(∂mf)(x)
∣∣∣ , k,m ∈ Nn

0

}
, the space S (Rn) is a Fréchet space (see pp. 29

in [Str03]). We know that a family in a Fréchet space is bounded when all its seminorms are
bounded. We calculate

gz,b(x) = fz(x)e−b|z|2 , ∂k
xgz,b(x) = e−b|z|2∂k

xfz(x).

It is easy to see that
∣∣∣xk
∣∣∣ =

n∏
i=1

|xi|ki ≤
n∏

i=1
|x|ki = |x||k| with |k| =

n∑
i=1
ki. For any k,m ∈ Nn

0

with M = |k| and N = |m|, the inequality (3.20) implies∣∣∣xk∂mgz,b(x)
∣∣∣ ≤

(
1 + |x|M

)
|∂mgz,b(x)|

=
(
1 + |x|M

)
|∂mfz(x)|e−b|z|2

≤ C
(
1 + |z|N+M+1

)
exp

(
−
(
b− 1

4a

)
|z|2

)
.

Per assumption, b > 1
4a , hence the prefactor in front of |z|2 in the exponential is negative. This
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implies that for all z ∈ Cn, the seminorms ∥gz,b∥k,m = sup
x∈Rn

{∣∣∣xm∂kgz,b(x)
∣∣∣} are bounded by

∥gz,b∥k,m ≤ sup
z∈Cn

C
(
1 + |z|N+M+1

)
exp

(
−
(
b− 1

4a

)
|z|2

)
< ∞,

and therefore, {gz,b}z∈Cn is a bounded family in S (Rn).
The case a = ∞ follows immediately from the previous since convergence in T n

∞ respectively A n
0+

is equivalent to convergence in T n
a for all a < ∞ respectively convergence in A n

ε+ for all ε > 0.

This lemma allows us to derive an important result about the multiplication of the Laplace
transform of a measure with functions in Pn

α+(Dn).

Proposition 3.16. Let 0 ≤ α < β ≤ ∞, let T be a distribution in T n
β whose Laplace transform T̂

lies in Pn
1/4β+(Dn) and let f ∈ Pn

α+(Dn). Then, for every γ < β − α (and for γ = ∞ if β = ∞),
the distribution fT lies in T n

γ and its Laplace transform f̂T lies in Pn
1/4γ+(Dn).

Proof. Assume that β, γ < ∞ first. We begin by proving that fT ∈ T n
γ . For a > 0, let ζa(x) :=

e−ax2 and ηa(x) = eax2 , where x ∈ Rn and x2 is to be understood as the scalar product x2 =
n∑

i=1
x2

i .

Let f ∈ Pn
α+(Dn) and T ∈ T n

β . Let g = ηγgγ be a test function with gγ ∈ S (Rn). The statement
will be proven by showing that fζβηγgγ , where f is regarded as a function of a real variable in the
obvious way, is a Schwartz function. Given that we can write T (φ) = Tβ(ζβφ) for some tempered
distribution Tβ and any test function φ, the claim will follow from the properties of tempered
distributions.
It is therefore sufficient to show that fζβηγgγ ∈ S (Rn). Recall that f ∈ Pn

α+(Dn) implies
|f(z)| ≤ eb|z|2 ∥f∥b for all b > a and for all z ∈ Cn. In particular, as β − γ > α, it follows that

e−(β−γ)|z|2 |f(z)| = ζβ(|z|)ηγ(|z|) |f(z)| ≤ ∥f∥β−γ < ∞ for all z ∈ Cn. (3.23)

Proposition 3.5(a) guarantees that this also holds for all derivatives of f . Let m1,m2 ∈ Nn
0 , then

sup
x∈Rn

{|x|m1 |∂m2
x (fζβηγgγ)(x)|} = sup

x∈Rn

|x|m1
∣∣ ∑
k≤m2

pk(x)ζβηγ∂
k
xf(x)∂l(k)

x gγ(x)
∣∣

≤ M1 sup
x∈Rn

|x|m1
∣∣ ∑
k≤m2

pk(x)∂l(k)
x gγ(x)

∣∣ < ∞,

where we defined M1 := max
k≤m2

{
sup
z∈Cn

{
ζβ(|z|)ηγ(|z|)

∣∣∣∂kf(z)
∣∣∣}} and M1 < ∞ by (3.23). The multi-

index inequalities are to be understood componentwise, pk are the multivariable polynomials of
degree at most |m2| in each variable xi that are obtained from differentiating ζβηγ , and l(k) ≤ m are
the corresponding multiindices that result from the application of the product rule. The supremum
is finite because ∑

k≤m2

pk∂
l(k)
x gγ is a Schwartz function (recall that the Schwartz space is closed under
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differentiation and under multiplication with polynomials). It follows that

fT (g) = Tβ(fζβηγgγ)

is well-defined. This proves fT ∈ T n
γ .

To prove the statement about the Laplace transform, assume first that f ∈ Pn(Dn). Then it is
easy to see that

f̂T (z) = T (f(x)ezx) = T (f(∂/∂z)ezx) = f(∂/∂z)T̂ (z),

so by Proposition 3.10 with a = α, b = 1/4β we have f̂T ∈ Pn
1/4(β−α)+(Dn) ⊂ Pn

1/4γ+(Dn) with
the obvious inclusions of the spaces.

For general f ∈ Pn
α+(Dn) let {fj} be a sequence in Pn(Dn) converging to f ∈ A n

a+. Note that
this implies not only ∥fj − f∥b → 0 for all b > α, but also

∥∥∥∂kfj − ∂kf
∥∥∥

b
→ 0 for all k ∈ Nn

0 .

Then, as in the proof of Lemma 3.15, we know that

|Tβ(fζβηγgγ)| ≤ K sup
x∈Rn

(
1 + |x|M

) ∑
|k|≤N

∣∣∣∂k(fζβηγgγ)(x)
∣∣∣

≤ KM2 max
|k|≤N

{∥∥∥∂kf
∥∥∥

β−γ

}
,

for some M,N ∈ N,K > 0, and M2 = sup
x∈Rn

{
(1 + |x|M )

∣∣ ∑
|k|≤N

pk(x)∂l(k)
x gγ(x)

∣∣} < ∞, with similar

arguments as used above.

This shows that there is some a K2 and a multiindex k ∈ Nn
0 such that for any test function g,

|fjT (g) − fT (g)| ≤ K2
∥∥∥∂kfj − ∂kf

∥∥∥
β−γ

→ 0 as j → ∞,

so {fjT} converges to fT in the topology of T n
γ .

By Lemma 3.15, {f̂jT} converges to f̂T in A n
1/4γ+. As Pn

1/4γ+(Dn) is closed in A n
1/4γ+, the limit

f̂T = lim
j→∞

ˆfjT is in Pn
1/4γ+(Dn), because any closed subset of a Fréchet space is sequentially closed

(see Proposition A.4).

The case β = ∞ (and possibly also γ = ∞) follows immediately from the previous since con-
vergence in T n

∞ respectively A n
0+ is equivalent to convergence in T n

a for all a < ∞ respectively
convergence in A n

ε+ for all ε > 0.

3.4 One-component models

In this section, we show that the previously derived propositions can be applied to the situation
introduced in Section 3.1.2. We prove the main result of this thesis, a Lee-Yang theorem for general
one-component ferromagnets. This is Corollary 3.19.
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Recall that we can write the partition function as

Z(h1, · · · , hn) =
∫
Rn

exp

 n∑
i,j=1

Jij
∂

∂hi

∂

∂hj

 exp
(

n∑
i=1
hiϕi

)
n∏

i=1
dνi(ϕi).

In order to describe the partition function using the terminology developed in Section 3.3, set

f(ϕ) = exp

 n∑
i,j=1

Jijϕiϕj

 , dµ0(ϕ) =
n∏

i=1
dνi(ϕi).

With the previously developed methods we see that we can write the free partition function as the
Laplace transform of the measure µ0,

Z0(h1, · · · , hn) =
∫
Rn

exp
(

n∑
i=1
hiϕi

)
n∏

i=1
dνi(ϕi) = µ̂0(h1, · · · , hn),

and the full partition function as the Laplace transform of fµ0,

Z(h1, · · · , hn) = f̂µ0(h1, · · · , hn).

Propositions 3.11 and 3.16 imply that for f̂µ0 to be nonvanishing on Dn, it is sufficient that
Jij ≥ 0 holds for all i, j and that µ̂0 ∈ Pn

c+(Dn) for c < 1
4∥J∥ (or any nonnegative c if ∥J∥ = 0).

These are essentially the considerations which enter into the proof of the Lee-Yang theorem below.
We first introduce some terminology to make the statements more precise.

Definition 3.17. A finite positive measure µ on Rn(µ ̸≡ 0) is said to have the Lee-Yang property
(with falloff β) if µ ∈ T n

β and µ̂ ∈ Pn
1/4β+(Dn).

Since µ ̸≡ 0 implies µ̂ ̸≡ 0, it follows that µ̂(z) ̸= 0 for Re z > 0, this is usually the conclusion of the
Lee-Yang theorem. The statement here is even stronger because it entails that µ̂ is approximable
by polynomials with this property.

Theorem 3.18. Let µ0 have the Lee-Yang property with falloff β. Let f ∈ Pn
α+(Dn) for some

α < β be nonnegative on the support of µ0, and strictly positive on a set of nonzero µ0-measure.
Then µ = fµ0 has the Lee-Yang property with falloff γ, for every γ < β−α (and γ = ∞ if β = ∞).
In particular, we can take

f(ϕ) = exp

 n∑
i,j=1

Jijϕiϕj

 , (3.24)

where Jij ≥ 0, provided that α = ∥J∥ < β, where ∥J∥ is the norm of J considered as a bilinear
form on Rn equipped with the Euclidean norm.

Proof. Proposition 3.16 states that fT ∈ T n
γ and f̂T ∈ Pn

1/4γ+(Dn) whenever f ∈ Pn
α+(Dn). The

positivity condition on f assures that µ ≥ 0 and µ ̸≡ 0. Proposition 3.11 implies that (3.24) is
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in Pn
∥J∥+(Dn). Furthermore, as (3.24) is strictly positive on Cn, it fulfils the requirements of the

theorem.

From this theorem, the Lee-Yang theorem for one-component ferromagnets follows.

Corollary 3.19. Let {νi}n
i=1 be measures on R1, each having the Lee-Yang property with falloff β.

Let J be a symmetric n × n matrix with nonnegative entries and ∥J∥ < β. Then the measure
µ on Rn given by

dµ(ϕ) = exp

 n∑
i,j=1

Jijϕiϕj

 n∏
i=1

dνi(ϕi)

has the Lee-Yang property with falloff γ for every γ < β−∥J∥ (and γ = ∞ if β = ∞). In particular,
we can let each measure νi be an even measure satisfying∫

ehϕdνi(ϕ) ̸= 0 for Re h ̸= 0. (3.25)

Proof. The action of the measures νi on any test function φi can be written as νi(φi) = Tβ,i(ζβ,iφi)
where ζβ,i(xi) = e−βx2

i and Tβ(x),i is some tempered distribution for each i. The additional index i
has been added to ζβ,i to indicate that it acts on the variable xi. Then, for any test function φ, it
holds that(

n∏
i=1
νi

)
(φ) =

(
n∏

i=1
Tβ,i

)(
n∏

i=1
ζβ,iφ

)
,

where ζβ(x) = exp
(

−β
n∑

i=1
x2

i

)
and

n∏
i=1
Tβ,i ∈ S ′(Rn). This proves

n∏
i=1
νi ∈ T n

β . Theorem 3.18

implies that µ = f
n∏

i=1
νi has the Lee-Yang property with falloff γ for every γ < β− ∥J∥ (and γ = ∞

if β = ∞).
The last remark is a consequence of Lemma 3.21.

For the proof of Lemma 3.21, we need the following lemma about the Laplace transform of a
measure.

Lemma 3.20. Let ν be a measure on R. Then the Laplace transform ν̂ is either nonvanishing in
at least one of the limits h → ±∞ or identically zero.

Proof. To see that, assume∫
ea|ϕ|dν(ϕ) < ∞ for all a ≥ 0. (3.26)

For h ∈ R, define L(h) =
∫
R e

hϕdν(ϕ). We claim that L(h) is either independent of h or diverges
in at least one of the limits h → ±∞. The claim implies the statement of the lemma because for
h ∈ R it is L(h) = ν̂(h).
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To prove the claim, let z = h+ ik for h, k ∈ R. Then, for ϕ ∈ R it holds that
∣∣∣ezϕ

∣∣∣ = ehϕ, so the
assumption (3.26) guarantees the well-definedness of

ν̂(z) =
∫
R
ezϕdν(ϕ) =

∫
R
ehϕ cos(kϕ)dν(ϕ) + i

∫
R
ehϕ sin(kϕ)dν(ϕ).

Moreover, the derivative

ν̂ ′(z) =
∫
R
ϕezϕdν(ϕ)

is well-defined at every z ∈ C. To see that, note first that |ϕ| ≤ e|ϕ|, this implies

∣∣ν̂ ′(z)
∣∣ ≤

∫
R
e(|z|+1)|ϕ|dν(ϕ).

The assumption (3.26) and the dominated convergence theorem finish the proof of the existence
of ν̂ ′. Hence ν̂ is an entire function and the Liouville theorem (Theorem 3.7 in [FB06]) applies.
The function ν̂ is therefore either constant or unbounded. If it is not constant, the inequality

|ν̂(z)| ≤
∫
R
ehϕdν(ϕ) = L(h)

implies that the right-hand side cannot be bounded on R, so that the claim is proven.

Lemma 3.21. Let ν be an even measure in T 1
β satisfying

∫
ehϕdνi(ϕ) ̸= 0 for Re h ̸= 0. Then

ν̂ ∈ P1
1/4β+(D1) and

ν̂(h) = Kebh2∏
j

(
1 + h2

α2
j

)

with K > 0 as well as 0 ≤ b ≤ 1/4β and 0 < α1 ≤ α2 ≤ · · ·, where
∑

j∈N
α−2

j < ∞ and the sequence

{αj}j∈N may be empty, finite or infinite.

Proof. First note that ν̂ is even because

ν̂(−h) =
∫
e−hxdν(x) =

∫
eh(−x)dν(−x) =

∫
ehydν(y) = ν̂(h).

Per assumption, ν̂ has no zeros with Re z > 0 and, as a consequence of its evenness, ν̂ cannot
have any zeros with Re z < 0, thus ν̂ has only purely imaginary zeros. In particular, they must
appear in complex conjugate pairs.
Use the Hadamard theorem (Theorem I.10.13 in [Lev64]) to write

ν̂(z) = zmeQ(z)∏
n∈N

(
1 − z

an

) p∏
k=1

ek

k
, (3.27)

where m is the multiplicity of the root at the origin, Q is a polynomial, an are the nonzero roots
of ν̂, and p is smallest non-negative integer such that the series ∑∞

n=1
1

|an|p+1 converges. The
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sequence (an)n∈N may be empty, finite or infinite.
Because ν̂ is in P1

1/4β+(D1), it is of exponential order at most 2. Hence the polynomial Q must
be of the form

Q(z) = bz2 + cz + d.

Given that ν̂ is even, it must hold that c = 0. Moreover, since ν̂ ∈ R for real h, it follows that b
must be real. Lemma 3.20 shows that ν̂ must be nonvanishing in at least one of the limits z → ±∞
due to the assumption ν̂ ∈ P1

1/4β+(D1). This implies b ≥ 0. Finally, d can be absorbed into a
constant prefactor, and we can see that m = 0 because ν̂(0) =

∫
dν ̸= 0 is implied by ν ̸≡ 0.

The last product in (3.27) is a constant and will therefore also be absorbed into a constant
prefactor.
The roots are purely imaginary and appear in complex conjugated pairs, therefore we write an1,2 :=

±iαn with αn ∈ R \ {0}. This yields the representation

ν̂(z) = Kebz2 ∏
n∈N

(
1 + z2

α2
n

)
. (3.28)

A sequence of polynomials (pn)n∈N approximating ν̂ can be obtained by cutting the infinite product
in (3.28) off at a finite nmax = n. These polynomials are bounded in absolute value by ν̂(|h|),∣∣∣∣∣Kebz2

nmax∏
n=1

(
1 + z2

α2
n

)∣∣∣∣∣ ≤ Keb|z|2
nmax∏
n=1

(
1 + |z|2

α2
n

)
= ν̂(|h|),

so that for all γ > 1
4β it holds that sup

n∈N
∥pn∥γ ≤ ∥ν̂∥γ . The sequence is therefore bounded and

pointwise convergent to ν̂. By Proposition 3.5(b), convergence in A 1
1/4β+ follows.

3.5 Two-component models

In this section, we derive a Lee-Yang theorem for general two-component ferromagnets. We show
that, by a change of variables, the partition function of a two-component ferromagnet can be traced
back to the partition function of a one-component ferromagnet with twice as many spins, such that
the Lee-Yang theorem immediately follows from the corresponding statements from Section 3.4. It
then only remains to express the result in terms of the initial variables in order to determine the
conditions under which a Lee-Yang theorem for general two-component ferromagnets holds.
The Hamiltonian of a two-component ferromagnet is given by

H =
n∑

i,j=1

2∑
α,β=1

J
(αβ)
ij ϕ

(α)
i ϕ

(β)
j +

n∑
i=1

2∑
α=1

h
(α)
i ϕ

(α)
i ,

where the upper index (in Greek letters) denotes the spin component and the lower index (in Roman
letters) numbers the spins on the lattice, as usual. We will use bold variables when referring to a
two-component magnetic field, h = (h(1), h(2)) or a two-component spin, ϕ = (ϕ(1), ϕ(2)).
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Lee-Yang Theorem à la Lieb-Sokal Paula Heim

We assume that there is no coupling between the different spin components, that is,

J
(12)
ij = J

(21)
ij = 0 for all i, j.

The partition function is

Z(h(1)
1 , · · · , h(2)

n ) =
∫

exp

 n∑
i,j=1

2∑
α=1

J
(αα)
ij ϕ

(α)
i ϕ

(α)
j +

n∑
i=1

2∑
α=1

h
(α)
i ϕ

(α)
i

 n∏
i=1

dνi(ϕi). (3.29)

For a general N -component ferromagnet, the partition function can be defined analogously by
replacing the sum over α = 1, 2 by a sum over α = 1, · · · , N . In the following, we first derive some
statements that hold for any N -component ferromagnet (N ≥ 2) and restrict the discussion to the
case N = 2, for which we can derive a Lee-Yang theorem, later.
We assume that the system is invariant under rotations, meaning that the measures νi are all

rotationally invariant. If a Lee-Yang theorem holds, it must thus hold regardless of the orientation
of the magnetic field, so we can let the magnetic field point in the 1-direction. It is therefore natural
to replace the assumption (3.26) by∫

ehϕ(1)dν(ϕ) ̸= 0 for Re h ̸= 0.

We show in Proposition 3.22 that this results in the zero-free region

L±
N =

h : ± Re h(1) >

[
N∑

α=2
(Im h(α))2

]1/2 . (3.30)

For a rotationally invariant measure ν on RN that describes the distribution of a general N -
component spin, we can derive the following statements.

Proposition 3.22. Let N ≥ 2 and ν ∈ T N
β be a rotationally invariant measure on RN , satisfying

∫
ehϕ(1)dνi(ϕ) ̸= 0 for Re h ̸= 0. (3.31)

Then the Laplace transform ν̂ is of the form

ν̂(h) = F

(
N∑

α=1
h(α)2

)
, (3.32)

where F is an entire function of order at most 1 with only real negative zeros. More precisely,

ν̂(h) = Kebζ
∏
j

(
1 + ζ

α2
j

)
(3.33)

with ζ =
N∑

α=1
h(α)2

,K > 0, 0 ≤ b ≤ 1/4β and 0 < α1 ≤ α2 ≤ · · · with
∑
j
α−2

j < ∞. The se-
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quence (αj)j∈N may be empty, finite or infinite.
Moreover, ν̂ ∈ PN

1/4β+(LN ), where

L±
N =

h : ± Re h(1) >

[
N∑

α=2
(Im h(α))2

]1/2 and LN := L+
N ∪ L−

N . (3.34)

Before proving the proposition, we emphasise that the condition (3.31) says that the projection of
ν onto the first coordinate has the Lee-Yang property as a measure on R1, not as a measure on RN .
In fact, it is easy to see that this cannot be true for the measure on RN . There is always some
h ∈ RN with Re h(α) > 0 for all α and ζ =

N∑
α=1

h(α)2 real, negative and arbitrary. It follows that

zeros of (3.32) could be contained in
{

h ∈ (Cn)N : Re h(α) > 0 for all α
}

. This is a consequence
of the different symmetry assumption. We therefore must replace the zero-free regions Dn that we
encountered in the case N = 1 by the regions L±

N . Their precise form is determined below.

Proof. By rotational invariance of ν, its Laplace transform ν̂ is a function of ζ only. By (3.31), if
h(2) = · · · = h(N) = 0, the function ν̂ has only purely imaginary zeros. As in Lemma 3.21, this
implies the representation (3.33). In particular, ν̂ is an entire function of ζ only and of order at
most 1.
A sequence of polynomials approximating ν̂ can be chosen in the obvious way. The same argument

as in Lemma 3.21 together with the following lemma prove ν̂ ∈ PN
1/4β+(LN ).

Together with the form of ν̂ derived in Proposition 3.22, the next lemma implies that ν̂(h) is
nonvanishing whenever h ∈ LN .

Lemma 3.23. Let LN be defined by (3.34) and let h ∈ LN . Then ζ =
N∑

α=1
h(α)2 is never real and

negative.

Proof. Write h = (x(1) + iy(1),x + iy) where x,y ∈ RN−1. Then ζ can be expressed as

ζ =
N∑

α=1

(
x(α)2 − y(α)2)+ i

(
2

N∑
α=1

x(α)y(α)
)

with Re ζ = x(1)2 − y(1)2 + |x|2 − |y|2 , and Im ζ = 2(x(1)y(1) + x · y). If Im ζ = 0, the Cauchy-
Schwartz inequality implies |y| >

∣∣∣x(1)
∣∣∣ ∣∣∣y(1)

∣∣∣ / |x|, because 0 = Im ζ = 2(x(1)y(1) + x · y) can be
rearranged to yield

x(1)y(1) = −x · y≤ − |x| |y| ,

where the last inequality is the Cauchy-Schwartz inequality .
The fact that h ∈ LN implies

∣∣∣x(1)
∣∣∣ > |y|, this is precisely the condition for h ∈ LN . Inserting

into the inequality above and multiplying it by |x| yields |x| >
∣∣∣y(1)

∣∣∣. It follows that

Re ζ = x(1)2 − |y|2 > 0.
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The next steps on the way to a Lee-Yang theorem are only possible for the two-component
ferromagnet. We therefore set N = 2 from now on and give some remarks about the case N ≥ 3
in Section 3.6. For N = 2, the sets L±

2 have the simple form

L±
2 =

{
h : ± Re h(1) >

∣∣∣Im h(α)
∣∣∣} .

Two successive linear transformations of variables allow us to convert the region L2 into a product
of two right half-planes Dn. This equivalence allows us to trace the problem back to the one-
component ferromagnet which makes a simple derivation of a Lee-Yang theorem for the case N = 2
possible.

For the first transformation, we introduce h̃ = (h(1), ih(2)). Then with

Γ± =
{

x : ± x(1) >
∣∣∣x(2)

∣∣∣} ,
the condition h ∈ L2 in terms of h̃ becomes Re h̃ ∈ Γ+ ∪Γ−. For the second transformation, define

h± = 2−1/2
(
h̃(1) ± h̃(2)

)
= 2−1/2

(
h(1) ± ih(2)

)
,

so that Re h̃i ∈ Γ+ for all i is equivalent to Re h±
i > 0 for all i. Note that

exp
(
h(1)ϕ(1) + h(2)ϕ(2)

)
= exp

(
h+ϕ− + h−ϕ+

)
where ϕ± is defined in an analogous way as h±. For the free partition function it holds that

Z0(h(1)
1 , · · · , h(2)

n ) =
∫

exp
(

n∑
i=1

(
h

(1)
i ϕ

(1)
i + h

(2)
i ϕ

(2)
i

)) n∏
i=1

dνi(ϕi)

=
∫

exp
(

n∑
i=1

(
h+

i ϕ
−
i + h−

i ϕ
+
i

)) n∏
i=1

dνi(ϕi).

If we regard the different spin and magnetic field components as separate, independent variables,
we see that this is precisely the situation studied before where the summation over n spin sites
is replaced by a summation over 2n spin sites, the only difference being that differentiation with
respect to h±

i brings down a factor ϕ∓
i . Hence the theorems of Section 3.4 apply.

In terms of the new variables, a ferromagnetic pair interaction is an entire function

f(ϕ) = exp

 n∑
i,j=1

( J++
ij ϕ+

i ϕ
+
j + J+−

ij ϕ+
i ϕ

−
j + J−+

ij ϕ−
i ϕ

+
j + J−

ijϕ
−
i ϕ

−
j

) (3.35)

with all coefficients J±±
ij , J±∓

ij ≥ 0. From our previous considerations, we know that the Lee-Yang
theorem in the form of Theorem 3.18 and Corollary 3.19 holds for such an interaction. For a
general two-component ferromagnet with partition function given by (3.29), there is therefore also
a Lee-Yang theorem, and its precise formulation can be obtained by changing the variables ϕ± back
to ϕ(1), ϕ(2).
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It is a matter of elementary algebra to express the interaction (3.35) in terms of the variables ϕ(α)
i ,

f(ϕ) = exp
(1

2

n∑
i,j=1

(
ϕ

(1)
i ϕ

(1)
j (J++

ij + J+−
ij + J−+

ij + J−−
ij ) + ϕ

(2)
i ϕ

(2)
j (−J++

ij + J+−
ij + J−+

ij − J−−
ij )

+iϕ(1)
i ϕ

(2)
j (J++

ij − J+−
ij + J−+

ij − J−−
ij ) + iϕ

(2)
i ϕ

(1)
j (J++

ij + J+−
ij − J−+

ij − J−−
ij )

))
.

Comparison with (3.29) yields the conditions

J (12) = J++
ij − J+−

ij + J−+
ij − J−−

ij = 0,

J (21) = J++
ij + J+−

ij − J−+
ij − J−−

ij = 0,

from which J++ = J−− and J+− = J−+ follows. The expressions for J (11) and J (22) simplify,

J (11) = J++ + J+−, and J (22) = J+− − J++.

Recall that a Lee-Yang theorem holds for the interaction (3.35) whenever J++, J+− ≥ 0 (assuming
that J++ = J−− and J+− = J−+). We deduce that for the interaction

f(ϕ) = exp
(

n∑
i=1

2∑
α=1

J
(αα)
ij ϕ

(α)
i ϕ

(α)
j

)
, (3.36)

a Lee-Yang theorem holds if

J
(11)
ij ≥

∣∣∣J (22)
ij

∣∣∣ for all i, j. (3.37)

The following analogues of Theorem 3.18 and Corollary and 3.19 now immediately follow.

Theorem 3.24. Let µ0 ̸≡ be a finite (positive) measure on R2n, µ0 ∈ T 2n
β and µ̂0 ∈ P2n

1/4β+((L+
2 )n).

Now let f ∈ P2n
α+((L+

2 )n) with α < β be nonnegative on the support of µ0 and strictly positive on
a set of nonzero µ0-measure.

Then µ = fµ0 is a finite positive measure with µ ̸≡ 0, µ ∈ T 2n
γ and µ̂ ∈ P2n

1/4γ+((L+
2 )n) for every

γ < β − α (and γ = ∞ if β = ∞). In particular, we can take f of the form (3.36), provided
α = ∥J∥ < β.

Corollary 3.25. For 1 ≤ i ≤ n, let νi ∈ T 2
β be a rotationally invariant measure on R2 satisfying∫

ehϕ(1)dν(ϕ) ̸= 0 for Re h ̸= 0. Let J be a symmetric 2n×2n matrix satisfying (3.37) and ∥J∥ < β.

Then for the measure µ on R2n given by

dµ(ϕ) = exp

 n∑
i,j=1

2∑
α=1

J
(αα)
ij ϕ

(α)
i ϕ

(α)
j

 n∏
i=1

dνi(ϕi)

it holds that µ ̸≡ 0, µ ∈ T 2n
γ and µ̂ ∈ P2n

1/4γ+((L+
2 )n) for every γ < β−∥J∥ (and γ = ∞ if β = ∞).
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In particular, the partition function

µ̂(h) =
∫

exp
(

n∑
i=1

2∑
α=1

h
(α)
i ϕ

(α)
i

)
dµ(ϕ)

is nonvanishing whenever

Re h(1)
i >

∣∣∣Im h
(2)
i

∣∣∣ for all i.

3.6 A note on ferromagnets with more than two spin components

Unlike for the two-component model, extending the result to a Lee-Yang theorem for general
N -component ferromagnets for N ≥ 3 with a partition function analogous to (3.29) is not as
straightforward. Although a thorough analysis of the N ≥ 3 case is beyond the scope of this thesis,
the findings presented in Section 3.5 provide some insight into the challenges that arise here.
Proposition 3.22 hold for all N ≥ 2. In particular, the zero-free region always contains the sets

L±
N =

h : ± Re h(1) >

[
N∑

α=2
(Im h(α))2

]1/2 .
In the case N = 2, the sum consists of a single term and the sets L±

2 therefore assume the form

L±
2 =

{
h : ± Re h(1) >

∣∣∣Im h(α)
∣∣∣} .

In the preceding paragraph, it was shown that this form allows for a linear transformation of these
sets into a product of two sets Dn for which the Lee-Yang theorem has been proven in Section 3.4.
If we take N ≥ 3, the condition for h = (h(1), · · · , h(N)) to be in L±

N is no longer linear which
makes such a transformation impossible. As a result, Propositions 3.1 and 3.11 do not hold in an
equally obvious way and have to be replaced by analogous statements involving the sets L±

N . Lieb
and Sokal also provided a proof for adapted versions of these two propositions, showing that for an
N -component ferromagnet whose interaction coefficients satisfy

J
(11)
ij ≥

N∑
α=2

∣∣∣J (αα)
ij

∣∣∣ for all i, j, (3.38)

a Lee-Yang theorem analogous to Corollaries 3.19 and 3.25 holds. However, the condition (3.38) is
generally regarded unsatisfactory [LS81; FR12]. One would like to replace it by the condition

J
(11)
ij ≥ max

2≤α≤N

∣∣∣J (αα)
ij

∣∣∣ for all i, j, (3.39)

which is known to imply a Lee-Yang theorem for certain multi-component ferromagnetic models
such as the Heisenberg model [Asa70b; SF71; Dun79]. The question of whether the condition (3.39)
is generally sufficient to imply a Lee-Yang theorem remains open, leaving room for future research.
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Appendix

A Facts about Fréchet spaces

We review the definition of Fréchet spaces and summarise the relevant properties for our proof.
This short review follows [EW17], pp. 295.

Definition A.1. A Fréchet space is a locally convex vector space X whose topology is induced by
countably many seminorms (∥·∥n)n∈N, meaning that a subset U is open if and only if for all u ∈ U

there are constants K ≥ 0, r > 0 such that {v : ∥v − u∥k < r for all k ≥ K} is a subset of U , and X
is complete.

The topology of a Fréchet space X is equivalently induced by the metric ([EW17] 8.65)

d(x, y) =
∑
n∈N

2−n ∥x− y∥n

1 + ∥x− y∥n
.

Note that d does not characterise bounded sets if the space X is metrisable but not normable (for
otherwise, there would be a bounded convex neighbourhood of the origin, which, by Kolmogorov’s
normability criterion (for example p. 484 in [Wer18]) would imply that the space is normable).
Instead boundedness is characterised by the seminorms (see pp. 49 in [Sim17]). Our Fréchet
spaces A n

a+ are not normable.

Definition A.2. Let X be a Fréchet space whose topology is induced by the seminorms (∥·∥n)n∈N.
A sequence (xj)j∈N is bounded if sup

j∈N
∥xj∥n < ∞ for all n ∈ N.

The next proposition characterises convergence in Fréchet spaces.

Proposition A.3. A sequence (fj)j∈N in X converges to f ∈ X if and only if ∥fj − f∥n → 0 as
j → ∞ for all n.

The next proposition follows from the fact that a Fréchet space is metrisable (see Theorem 2.10
in [Sim17]).

Proposition A.4. Let X be a Fréchet space and A ⊂ X closed. Then A is sequentially closed.
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B Proof of the identity (3.18)

Lemma B.1. Let g be an entire function and t ∈ C. Then for all z ∈ C it holds that

exp(2t∂z)g(z) = g(z + 2t).

Proof. The identity can be proven by writing out the differential operator as the power series by
which it is defined, and then applying it termwise to the power series of f . Since f is an entire
function, its power series is absolutely convergent everywhere, this is important for the proof.
Writing both sums out yields

exp(2t∂z)f(z) =
∑

n∈N0

(2t∂z)n

n! f(z)

=
∑

n∈N0

(2t∂z)n

n!
∑

k∈N0

f (k)(z0)(z − z0)k

k! .

Now we determine the result of an application of a single derivative 2t∂z and from this the appli-
cation of arbitrary powers of it to the power series of f . We obtain

(2t∂z)
∑

k∈N0

f (k)(z0)(z − z0)k

k! =
∑
k∈N

f (k)(z0)(z − z0)k−1

(k − 1)! ,

(2t∂z)n
∑

k∈N0

2tf
(k)(z0)(z − z0)k

k! =
∑

k∈N≥n

(2t)nf (k)(z0)(z − z0)k−n

(k − n)! .

To prove the lemma, the only remaining step is to carry out the summation over n,

∑
n∈N0

(2t∂z)n

n!
∑

k∈N0

f (k)(z0)(z − z0)k

k! =
∑

k∈N0

k∑
n=0

(2t)nf (k)(z0)(z − z0)k−n

n!(k − n)!

=
∑
k∈N

f (k)(z0)
k!

k∑
n=0

k!
n!(k − n)! (2t)

n(z − z0)k−n

=
∑
k∈N

f (k)(z0)
k! (2t+ z − z0)k = f(2t+ z).
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C Proof of Lemma 3.14

We first prove the lemma and afterwards give some lemmas that we use in the proof of Lemma 3.14.

Lemma C.1. Let α ∈ Nn
0 with |α| = N , M ∈ N0, z ∈ Cn and fz(x) = exp

(
zx− ax2). Then there

is a constant C (dependent on M,N) such that the following inequality holds

sup
x∈Rn

(
1 + |x|M

)
|∂α

x fz(x)| ≤ C
(
1 + |z|N+M+1

)
exp

(
|z|2

4a

)
.

Proof. Note that for φ ∈ S (Rn) and its Fourier transform F (φ), there exists a constant C0 such
that the following holds (see Theorem 1.4 in [Kat68]),

∥φ∥∞ ≤ C0 ∥F (φ)∥1 .

Moreover,

∂α
xφ(x) =

∫
Rn

(ip)α eipxF (φ) (p) dnp

(2π)n
,

so that (F (∂α
xφ))(p) = (ip)α F (φ) (p), and it follows

∥∂αφ∥∞ ≤ C0 ∥(ip)αF (φ)∥1 .

Analogously, letting ψα(x) = xα, then

∂α
p F (φ) (p) =

∫
Rn

(−ix)αφ(x)e−ipxF (φ) (p)dnx = (−i)α(F (ψαφ))(p).

It follows that

∥xαφ∥∞ = ∥ψαφ∥∞ ≤ C0
∥∥∥∂α

p F (φ)
∥∥∥

1
.

The expression
(
1 + |x|M

)
|∂α

x fz(x)| can thus be bounded using the Fourier transform of fz,

F (fz) (p) =
(
π

a

)n/2
e− 1

4a
(p−iz)2

.

As we aim to bound the integral of |F (fz)|, we need the identity

∣∣∣e− 1
4a

(p−iz)2 ∣∣∣ = e− 1
4a

(p+Imz)2
e

(Rez)2
4a .

Moreover, the exponential can be factorised,

e− 1
4a

(p+Imz)2
=

n∏
µ=1

e− 1
4a

(pµ+Imzµ)2
.
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We then calculate, using the substitution ξ = p+ Im z,

∥∂α
x fz∥∞ ≤ C0

(
π

a

)n/2 ∫
Rn

|pα|
∣∣∣e− 1

4a
(p−iz)2∣∣∣ dnp

= C0

(
π

a

)n/2
e

(Rez)2
4a

n∏
µ=1

∫
R

|pµ|αµ e− 1
4a

(pµ+Imzµ)2
dpµ

= C0

(
π

a

)n/2
e

(Rez)2
4a

n∏
µ=1

∫
R

|ξµ − Im z|αµ e− 1
4a

(ξµ)2
dξµ.

With Lemma C.5, we can bound the integrals, which yields

∥∂α
x fz∥∞ ≤ C0

(
π

a

)n/2
e

(Rez)2
4a

n∏
µ=1

Kµ (1 + |Im zµ|)αµ

where Kµ are the respective constants obtained from the application of Lemma C.5 for the integral
over ξµ. Furthermore, with |α| =

n∑
µ=1

αµ, it holds that

|pα| =
n∏

µ=1
|pµ|αµ ≤

n∏
µ=1

|p|αµ = |p||α| , (C.1)

Using (C.1), the fact that |Im z| , |Re z| ≤ |z| and Lemma C.4, we find

∥∂α
x fz∥∞ ≤ C1e

(|z|)2
4a

(
1 + |z||α|

)
,

where C1 is some suitably chosen constant.

Similarly, assuming that M is even and choosing β ∈ Nn
0 so that |x|M = xβ, we see that

∥∥∥|x|M ∂α
x fz

∥∥∥
∞

≤ C0

(
π

a

)n/2 ∫
Rn

∣∣∣∂β
p

(
(ip)αe− 1

4a
(p−iz)2)∣∣∣ dnp

= C0

(
π

a

)n/2 ∫
Rn

∣∣∣Pα+β(p, z)e− 1
4a

(p−iz)2∣∣∣ dnp

where Pα+β(p, z) is a polynomial of the form

Pα+β(p, z) =
∑

k∈Nn
0 ,

|k|≤deg P

ckp
γ

(p)
k zγ

(z)
k

and γ
(p)
k + γ

(z)
k ≤ α+ β entry-wise. We therefore write

∥∥∥|x|M ∂α
x fz

∥∥∥
∞

≤ C0

(
π

a

)n/2 ∑
k∈Nn

0 ,
|k|≤deg P

|ck|
∫
Rn

∣∣∣∣pγ
(p)
k zγ

(z)
k e− 1

4a
(p−iz)2

∣∣∣∣ dnp
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Lee-Yang Theorem à la Lieb-Sokal Paula Heim

and then use the same arguments as before to estimate for each k separately

∫
Rn

∣∣∣∣pγ
(p)
k zγ

(z)
k e− 1

4a
(p−iz)2

∣∣∣∣ dnp ≤
∣∣∣∣zγ

(z)
k

∣∣∣∣ e (Rez)2
4a

n∏
µ=1

K ′
µ (1 + |Im zµ|)γ

(p)
kµ .

Obviously, |Im z| , |Re z| ≤ |z|, and it holds that

|pα| =
n∏

µ=1
|pµ|αµ ≤

n∏
µ=1

|p|αµ = |p||α|

with |α| =
n∑

µ=1
αµ, so we can further estimate, employing (C.1) and Lemma C.4,

∣∣∣∣zγ
(z)
k

∣∣∣∣ e (Rez)2
4a

n∏
µ=1

K ′
µ (1 + |Im zµ|)γ

(p)
kµ ≤ C2(e

|z|2
z

)24a |z|

∣∣∣γ(z)
k

∣∣∣ (1 + |z|

∣∣∣γ(p)
k

∣∣∣)
.

We use this, Lemma C.4 and
∣∣∣γ(p)

k

∣∣∣+ ∣∣∣γ(z)
k

∣∣∣ ≤ |α| + |β| to get an overall estimate

∥∥∥|x|M ∂α
x fz

∥∥∥
∞

≤ C3e
|z|2
4a

(
1 + |z||α|+|β|

)
.

Now we put the separate estimates together to show that

sup
x∈Rn

(
1 + |x|N

)
∂α

x fz(x) ≤ ∥∂α
x fz∥∞ +

∥∥∥|x|N ∂α
x fz

∥∥∥
∞

≤
(
C1e

|z|2
4a

(
1 + |z||α|

)
+ C3e

|z|2
4a

(
1 + |z||α|+|β|

))
≤ C4

(
1 + |z||α|+|β|

)
e

|z|2
4a ,

where Lemma C.4 has been used in the last step.

Moreover, Lemma C.3 shows that there exists a constant C5 such that(
1 + |z||α|+|β|

)
≤ C5 (1 + |z|)|α|+|β| .

All z ∈ Cn satisfy 1 + |z| ≥ 1. Since y 7→ xy is monotonously increasing for x ∈ [1,∞) and y ≥ 0,
it is clear that

(1 + |z|)|α|+|β| ≤ (1 + |z|)|α|+|β|+1 .

Finally, Lemma C.3 yields a constant C6 > 0 such that

(1 + |z|)|α|+|β|+1 ≤ C−1
6

(
1 + |z||α|+|β|+1

)
.

Recalling |α| = N, |β| = M finishes the proof in the case that M is even.

If M is uneven, we replace M by M + 1 and repeat the above argument but leave out the
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step where we establish that
(
1 + |z||α|+|β|

)
≤ C5

C6

(
1 + |z||α|+|β|+1

)
. This completes the proof for

uneven M .

Now we prove somme lemmas that have been used in the above proof.

Lemma C.2. Let p =
n∑

i=0
aix

i be a polynomial in a real variable x, where n := deg p. Assume ai ≥ 0

for all i = 0, · · · , n. Then there are constants 0 ≤ c < C such that c(1 + x)n ≤ p(x) ≤ C(1 + x)n

for all x ≥ 0.

Proof. Obviously, p(x) ≥ 0 whenever x ≥ 0, so it can be taken c = 0. In order to find a suitable
constant for the upper bound, write (1 + x)n =

n∑
i=0
bix

i. Note that all coefficients bi are nonzero, so

that ci := ai
bi

is well-defined. Let C := max
1≤i≤n

ci, then C(1 + x)n = C
n∑

i=0
bix

i ≥
n∑

i=0
aix

i = p(x), this
yields the desired inequality.

Lemma C.3. Let M ∈ N0. There are constants 0 < c ≤ C (that are dependent on M) such that
for all x ∈ R the following holds

c (1 + |x|)M ≤
(
1 + |x|M

)
≤ C (1 + |x|)M .

Proof. If M = 0, we can take c = C = 2. If M = 1, we can take c = C = 1. In both cases, that
finishes the proof.
Let therefore M ≥ 2 and define

g : (−1,∞) → R, x 7→ (1 + x)M

1 + xM
.

Then g is a continuously differentiable function and g(0) = 1, lim
x→∞

g(x) = 1. Now consider

dg
dx(x) =

M(1 + x)M−1
(
1 − xM−1

)
(1 + xM )2 .

It is easy to see that g′(x) = 0 holds if and only if x = 1 and that therefore, 1 ≤ g(x) ≤ g(1) = 2M−1

for all x ∈ [0,∞). As g(0) < g(1) and lim
x→∞

g(x) < g(1), it is evident that there is a maximum at
x = 1. This yields the desired inequality with c = 21−M , C = 1.

Lemma C.4. For any polynomial p in n variables x1, · · · , xn,
deg P∑
k=0

n∏
i=1
cki
xki

i , there are constants

0 ≤ c < C such that

c
(
1 +

∣∣∣xk
∣∣∣) ≤ p(|x1| , · · · , |x1|) ≤ C

(
1 +

∣∣∣xk
∣∣∣) .

Proof. This is an immediate consequence of Lemma C.2 and Lemma C.3.
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Lemma C.5. Let a ∈ R, a > 0. For all b ∈ R,m ∈ N0, there exists a constant K (that depends on
a, b and m) such that

0 ≤
∫
R

|p|m e− 1
4a

(p+b)2dp ≤ K (1 + |b|)m .

Proof. Since the integrand is always nonnegative, it is clear that

0 ≤
∫
R

|p|m e− 1
4a

(p+b)2dp.

For the other inequality, use the substitution ξ = p+ b to write∫
R

|p|m e− 1
4a

(p+b)2dp =
∫
R

|ξ − b|m e− 1
4a

ξ2dξ

=
∫ b

−∞
(b− ξ)me− 1

4a
ξ2dξ +

∫ ∞

b
(ξ − b)me− 1

4a
ξ2dξ

=
m∑

k=0

(
m

k

)[
bm−k

∫ ∞

−b
ξke− 1

4a
ξ2dξ + (−b)m−k

∫ ∞

b
ξke− 1

4a
ξ2dξ

]
.

We therefore need to evaluate the following integral for c = ±b,

∫ ∞

c
ξke− 1

4a
ξ2dξ =


(−4a)k/2∂

k/2
1/4a

∫ ∞

c
e− 1

4a
ξ2dξ if k is even.

(−4a)(k−1)/2∂
(k−1)/2
1/4a

∫ ∞

c
ξe− 1

4a
ξ2dξ if k is uneven.

It is clear that∫ ∞

c
e− 1

4a
ξ2dξ ≤

∫ ∞

−∞
e− 1

4a
ξ2dξ =

√
4aπ

and ∫ ∞

c
ξe− 1

4a
ξ2dξ =

[
−2ae− 1

4a
ξ2]∞

c
= 2ae− c2

4a ≤ 2a.

This shows that there are constants Ka
k,c for k ∈ N0, c ∈ R such that

∫ ∞

c
ξke− 1

4a
ξ2dξ ≤ Ka

k,c.
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Lee-Yang Theorem à la Lieb-Sokal Paula Heim

Inserting into the integral that we aim to bound yields

∫
R

|p|m e− 1
4a

(p+b)2dp =
m∑

k=0

(
m

k

)[
bm−k

∫ ∞

−b
ξke− 1

4a
ξ2dξ + (−b)m−k

∫ ∞

b
ξke− 1

4a
ξ2dξ

]

=
m∑

k=0

(
m

k

)[
bm−kKk,−b + (−b)m−kKk,b

]
≤

m∑
k=0

(
m

k

)[
|b|m−k |Kk,−b| + |b|m−k |Kk,b|

]
≤ max

k≤m
{|Kk,b| , |Kk,−b|}

m∑
k=0

(
m

k

)
1k |b|m−k =K (1 + |b|)m ,

where K = max
k≤m

{Ka
k,b,K

a
k,−b}.
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